14 research outputs found

    Antiviral and Cellular Metabolism Interactions between Dexelvucitabine and Lamivudine▿

    No full text
    Studies on cellular drug interactions with antiretroviral agents prior to clinical trials are critical to detect possible drug interactions. Herein, we demonstrated that two 2′-deoxycytidine antiretroviral agents, dexelvucitabine (known as β-d-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine, DFC, d-d4FC, or RVT) and lamivudine (3TC), combined in primary human peripheral blood mononuclear (PBM) cells infected with human immunodeficiency virus 1 strain LAI (HIV-1LAI), resulted in additive-to-synergistic effects. The cellular metabolism of DFC and 3TC was studied in human T-cell lymphoma (CEM) and in primary human PBM cells to determine whether this combination caused any reduction in active nucleoside triphosphate (NTP) levels, which could decrease with their antiviral potency. Competition studies were conducted by coincubation of either radiolabeled DFC with different concentrations of 3TC or radiolabeled 3TC with different concentrations of DFC. Coincubation of radiolabeled 3TC with DFC at concentrations up to 33.3 μM did not cause any marked reduction in 3TC-triphosphate (TP) or any 3TC metabolites. However, a reduction in the level of DFC metabolites was noted at high concentrations of 3TC with radiolabeled DFC. DFC-TP levels in CEM and primary human PBM cells decreased by 88% and 94%, respectively, when high concentrations of 3TC (33.3 and 100 μM) were added, which may influence the effectiveness of DFC-5′-TP on the HIV-1 polymerase. The NTP levels remained well above the median (50%) inhibitory concentration for HIV-1 reverse transcriptase. These results suggest that both β-d- and β-l-2′-deoxycytidine analogs, DFC and 3TC, respectively, substrates of 2′-deoxycytidine kinase, could be used in a combined therapeutic modality. However, it may be necessary to decrease the dose of 3TC for this combination to prove effective

    Pharmacology and Pharmacokinetics of the Antiviral Agent β-d-2′,3′-Dideoxy-3′-Oxa-5-Fluorocytidine in Cells and Rhesus Monkeys

    No full text
    β-d-2′,3′-Dideoxy-3′-oxa-5-fluorocytidine (d-FDOC) is an effective inhibitor of human immunodeficiency virus 1 (HIV-1) and HIV-2, simian immunodeficiency virus, and hepatitis B virus (HBV) in vitro. The purpose of this study was to evaluate the intracellular metabolism of d-FDOC in human hepatoma (HepG2), human T-cell lymphoma (CEM), and primary human peripheral blood mononuclear (PBM) cells by using tritiated compound. By 24 h, the levels of d-FDOC-triphosphate (d-FDOC-TP) were 2.8 ± 0.4, 6.7 ± 2.3, and 2.0 ± 0.1 pmol/10(6) cells in HepG2, CEM, and primary human PBM cells, respectively. Intracellular d-FDOC-TP concentrations remained greater than the 50% inhibitory concentration for HIV-1 reverse transcriptase for up to 24 h after removal of the drug from cell cultures. In addition to d-FDOC-monophosphate (d-FDOC-MP), -diphosphate (d-FDOC-DP), and -TP, d-FDOC-DP-ethanolamine and d-FDOC-DP-choline were detected in all cell extracts as major intracellular metabolites. d-FDOC was not a substrate for Escherichia coli thymidine phosphorylase. No toxicity was observed in mice given d-FDOC intraperitoneally for 6 days up to a dose of 100 mg/kg per day. Pharmacokinetic studies in rhesus monkeys indicated that d-FDOC has a t(1/2) of 2.1 h in plasma and an oral bioavailability of 38%. The nucleoside was excreted unchanged primary in the urine, and no metabolites were detected in plasma or urine. These results suggest that further safety and pharmacological studies are warranted to assess the potential of this nucleoside for the treatment of HIV- and HBV-infected individuals

    Anti-Human Immunodeficiency Virus Activity, Cross-Resistance, Cytotoxicity, and Intracellular Pharmacology of the 3′-Azido-2′,3′-Dideoxypurine Nucleosides▿

    No full text
    Although the approved nucleoside reverse transcriptase (RT) inhibitors (NRTI) are integral components of therapy for human immunodeficiency virus type 1 (HIV-1) infection, they can have significant limitations, including the selection of NRTI-resistant HIV-1 and cellular toxicity. Accordingly, there is a critical need to develop new NRTI that have excellent activity and safety profiles and exhibit little or no cross-resistance with existing drugs. In this study, we report that the 3′-azido-2′,3′-dideoxypurine nucleosides (ADPNs) 3′-azido-2′,3′-dideoxyadenosine (3′-azido-ddA) and 3′-azido-2′,3′-dideoxyguanosine (3′-azido-ddG) exert potent antiviral activity in primary human lymphocytes and HeLa and T-cell lines (50% inhibitory concentrations [IC50s] range from 0.19 to 2.1 μM for 3′-azido-ddG and from 0.36 to 10 μM for 3′-azido-ddA) and that their triphosphate forms are incorporated as efficiently as the natural dGTP or dATP substrates by HIV-1 RT. Importantly, both 3′-azido-ddA and 3′-azido-ddG retain activity against viruses containing K65R, L74V, or M184V (IC50 change of <2.0-fold) and against those containing three or more thymidine analog mutations (IC50 change of <3.5-fold). In addition, 3′-azido-ddG does not exhibit cytotoxicity in primary lymphocytes or epithelial or T-cell lines and does not decrease the mitochondrial DNA content of HepG2 cells. Furthermore, 3′-azido-ddG is efficiently phosphorylated to 3′-azido-ddGTP in human lymphocytes, with an intracellular half-life of the nucleoside triphosphate of 9 h. The present data suggest that additional preclinical studies are warranted to assess the potential of ADPNs for treatment of HIV-1 infection

    Ribonucleoside Analogue That Blocks Replication of Bovine Viral Diarrhea and Hepatitis C Viruses in Culture

    No full text
    A base-modified nucleoside analogue, β-d-N(4)-hydroxycytidine (NHC), was found to have antipestivirus and antihepacivirus activities. This compound inhibited the production of cytopathic bovine viral diarrhea virus (BVDV) RNA in a dose-dependant manner with a 90% effective concentration (EC(90)) of 5.4 μM, an observation that was confirmed by virus yield assays (EC(90) = 2 μM). When tested for hepatitis C virus (HCV) replicon RNA reduction in Huh7 cells, NHC had an EC(90) of 5 μM on day 4. The HCV RNA reduction was incubation time and nucleoside concentration dependent. The in vitro antiviral effect of NHC was additive with recombinant alpha interferon-2a and could be prevented by the addition of exogenous cytidine and uridine but not of other natural ribo- or 2′-deoxynucleosides. When HCV RNA replicon cells were cultured in the presence of increasing concentrations of NHC (up to 40 μM) for up to 45 cell passages, no resistant replicon was selected. Similarly, resistant BVDV could not be selected after 20 passages. NHC was phosphorylated to the triphosphate form in Huh7 cells, but in cell-free HCV NS5B assays, synthetic NHC-triphosphate (NHC-TP) did not inhibit the polymerization reaction. Instead, NHC-TP appeared to serve as a weak alternative substrate for the viral polymerase, thereby changing the mobility of the product in polyacrylamide electrophoresis gels. We speculate that incorporated nucleoside analogues with the capacity of changing the thermodynamics of regulatory secondary structures (with or without introducing mutations) may represent an important class of new antiviral agents for the treatment of RNA virus infections, especially HCV

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Health-status outcomes with invasive or conservative care in coronary disease

    No full text
    BACKGROUND In the ISCHEMIA trial, an invasive strategy with angiographic assessment and revascularization did not reduce clinical events among patients with stable ischemic heart disease and moderate or severe ischemia. A secondary objective of the trial was to assess angina-related health status among these patients. METHODS We assessed angina-related symptoms, function, and quality of life with the Seattle Angina Questionnaire (SAQ) at randomization, at months 1.5, 3, and 6, and every 6 months thereafter in participants who had been randomly assigned to an invasive treatment strategy (2295 participants) or a conservative strategy (2322). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate differences between the treatment groups. The primary outcome of this health-status analysis was the SAQ summary score (scores range from 0 to 100, with higher scores indicating better health status). All analyses were performed in the overall population and according to baseline angina frequency. RESULTS At baseline, 35% of patients reported having no angina in the previous month. SAQ summary scores increased in both treatment groups, with increases at 3, 12, and 36 months that were 4.1 points (95% credible interval, 3.2 to 5.0), 4.2 points (95% credible interval, 3.3 to 5.1), and 2.9 points (95% credible interval, 2.2 to 3.7) higher with the invasive strategy than with the conservative strategy. Differences were larger among participants who had more frequent angina at baseline (8.5 vs. 0.1 points at 3 months and 5.3 vs. 1.2 points at 36 months among participants with daily or weekly angina as compared with no angina). CONCLUSIONS In the overall trial population with moderate or severe ischemia, which included 35% of participants without angina at baseline, patients randomly assigned to the invasive strategy had greater improvement in angina-related health status than those assigned to the conservative strategy. The modest mean differences favoring the invasive strategy in the overall group reflected minimal differences among asymptomatic patients and larger differences among patients who had had angina at baseline

    Initial invasive or conservative strategy for stable coronary disease

    No full text
    BACKGROUND Among patients with stable coronary disease and moderate or severe ischemia, whether clinical outcomes are better in those who receive an invasive intervention plus medical therapy than in those who receive medical therapy alone is uncertain. METHODS We randomly assigned 5179 patients with moderate or severe ischemia to an initial invasive strategy (angiography and revascularization when feasible) and medical therapy or to an initial conservative strategy of medical therapy alone and angiography if medical therapy failed. The primary outcome was a composite of death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. A key secondary outcome was death from cardiovascular causes or myocardial infarction. RESULTS Over a median of 3.2 years, 318 primary outcome events occurred in the invasive-strategy group and 352 occurred in the conservative-strategy group. At 6 months, the cumulative event rate was 5.3% in the invasive-strategy group and 3.4% in the conservative-strategy group (difference, 1.9 percentage points; 95% confidence interval [CI], 0.8 to 3.0); at 5 years, the cumulative event rate was 16.4% and 18.2%, respectively (difference, 121.8 percentage points; 95% CI, 124.7 to 1.0). Results were similar with respect to the key secondary outcome. The incidence of the primary outcome was sensitive to the definition of myocardial infarction; a secondary analysis yielded more procedural myocardial infarctions of uncertain clinical importance. There were 145 deaths in the invasive-strategy group and 144 deaths in the conservative-strategy group (hazard ratio, 1.05; 95% CI, 0.83 to 1.32). CONCLUSIONS Among patients with stable coronary disease and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of ischemic cardiovascular events or death from any cause over a median of 3.2 years. The trial findings were sensitive to the definition of myocardial infarction that was used
    corecore