67 research outputs found
Does Landscape Fragmentation Influence Sex Ratio of Dioecious Plants? A Case Study of Pistacia chinensis in the Thousand-Island Lake Region of China
The Thousand-Island Lake region in Zhejiang Province, China is a highly fragmented landscape with a clear point-in-time of fragmentation as a result of flooding to form the reservoir. Islands in the artificial lake were surveyed to examine how population sex ratio of a dioecious plant specie Pistacia chinensis B. was affected by landscape fragmentation. A natural population on the mainland near the lake was also surveyed for comparison. Population size, sex ratio and diameter at breast height (DBH) of individuals were measured over 2 years. More than 1,500 individuals, distributed in 31 populations, were studied. Soil nitrogen in the different populations was measured to identify the relationship between sex ratio and micro-environmental conditions. In accordance with the results of many other reports on biased sex ratio in relation to environmental gradient, we found that poor soil nitrogen areas fostered male-biased populations. In addition, the degree of sex ratio bias increased with decreasing population size and population connectivity. The biased sex ratios were only found in younger individuals (less than 50 years old) in small populations, while a stable 1∶1 sex ratio was found in the large population on the mainland. We concluded that the effects of landscape fragmentation on the dioecious population sex ratio were mainly achieved in relation to changing soil nitrogen conditions in patches and pollen limitation within and among populations. Large populations could maintain a more suitable environment in terms of nutrient conditions and pollen flow, subsequently maintaining a stable sex ratio in dioecious plant populations. Both micro-environmental factors and spatial structure should be considered in fragmented landscape for the conservation of dioecious plant species
Tree species diversity and utilities in a contracting lowland hillside rainforest fragment in Central Vietnam
Abstract Background Within the highly bio-diverse ‘Northern Vietnam Lowland Rain Forests Ecoregion’ only small, and mostly highly modified forestlands persist within vast exotic-species plantations. The aim of this study was to elucidate vegetation patterns of a secondary hillside rainforest remnant (elevation 120–330 m, 76 ha) as an outcome of natural processes, and anthropogenic processes linked to changing forest values. Methods In the rainforest remnant tree species and various bio-physical parameters (relating to soils and terrain) were surveyed on forty 20 m × 20 m sized plots. The forest's vegetation patterns and tree diversity were analysed using dendrograms, canonical correspondence analysis, and other statistical tools. Results Forest tree species richness was high (172 in the survey, 94 per hectare), including many endemic species (>16%; some recently described). Vegetation patterns and diversity were largely explained by topography, with colline/sub-montane species present mainly along hillside ridges, and lowland/humid-tropical species predominant on lower slopes. Scarcity of high-value timber species reflected past logging, whereas abundance of light-demanding species, and species valued for fruits, provided evidence of human-aided forest restoration and ‘enrichment’ in terms of useful trees. Exhaustion of sought-after forest products, and decreasing appreciation of non-wood products concurred with further encroachment of exotic plantations in between 2010 and 2015. Regeneration of rare tree species was reduced probably due to forest isolation. Conclusions Despite long-term anthropogenic influences, remnant forests in the lowlands of Vietnam can harbor high plant biodiversity, including many endangered species. Various successive future changes (vanishing species, generalist dominance, and associated forest structural-qualitative changes) are, however, expected to occur in small forest fragments. Lowland forest biodiversity can only be maintained if forest fragments maintain a certain size and/or are connected via corridors to larger forest networks. Preservation of the forests may be fostered using new economic incentive schemes
Cortisol, cognition and the ageing prefrontal cortex
The structural and functional decline of the ageing human brain varies by brain
region, cognitive function and individual. The underlying biological mechanisms are
poorly understood. One potentially important mechanism is exposure to
glucocorticoids (GCs; cortisol in humans); GC production is increasingly varied with
age in humans, and chronic exposure to high levels is hypothesised to result in
cognitive decline via cerebral remodelling. However, studies of GC exposure in
humans are scarce and methodological differences confound cross-study comparison.
Furthermore, there has been little focus on the effects of GCs on the frontal lobes and
key white matter tracts in the ageing brain. This thesis therefore examines
relationships among cortisol levels, structural brain measures and cognitive
performance in 90 healthy, elderly community-dwelling males from the Lothian
Birth Cohort 1936. Salivary cortisol samples characterised diurnal (morning and
evening) and reactive profiles (before and after a cognitive test battery). Structural
variables comprised Diffusion Tensor Imaging measures of major brain tracts and a
novel manual parcellation method for the frontal lobes. The latter was based on a
systematic review of current manual methods in the context of putative function and
cytoarchitecture. Manual frontal lobe brain parcellation conferred greater spatial and
volumetric accuracy when compared to both single- and multi-atlas parcellation at
the lobar level. Cognitive ability was assessed via tests of general cognitive ability,
and neuropsychological tests thought to show differential sensitivity to the integrity
of frontal lobe sub-regions. The majority of, but not all frontal lobe test scores shared
considerable overlap with general cognitive ability, and cognitive scores correlated
most consistently with the volumes of the anterior cingulate. This is discussed in
light of the diverse connective profile of the cingulate and a need to integrate
information over more diffuse cognitive networks according to proposed de-differentiation
or compensation in ageing. Individuals with higher morning, evening
or pre-test cortisol levels showed consistently negative relationships with specific
regional volumes and tract integrity. Participants whose cortisol levels increased
between the start and end of cognitive testing showed selectively larger regional
volumes and lower tract diffusivity (correlation magnitudes <.44). The significant
relationships between cortisol levels and cognition indicated that flatter diurnal
slopes or higher pre-test levels related to poorer test performance. In contrast, higher
levels in the morning generally correlated with better scores (correlation magnitudes
<.25). Interpretation of all findings was moderated by sensitivity to type I error,
given the large number of comparisons conducted. Though there were limited
candidates for mediation analysis, cortisol-function relationships were partially
mediated by tract integrity (but not sub-regional frontal volumes) for memory and
post-error slowing. This thesis offers a novel perspective on the complex interplay
among glucocorticoids, cognition and the structure of the ageing brain. The findings
suggest some role for cortisol exposure in determining age-related decline in
complex cognition, mediated via brain structure
- …