3 research outputs found
A Structured Learning Approach to Attributed Graph Embedding
In this paper, we describe the use of concepts from structural and statistical pattern recognition for recovering a mapping which can be viewed as an operator on the graph attribute-set. This mapping can be used to embed graphs into spaces where tasks such as categorisation and relational matching can be effected. We depart from concepts in graph theory to introduce mappings as operators over graph spaces. This treatment leads to the recovery of a mapping based upon the graph attributes which is related to the edge-space of the graphs under study. As a result, this mapping is a linear operator over the attribute set which is associated with the graph topology. Here, we employ an optimisation approach whose cost function is related to the target function used in discrete Markov Random Field approaches. Thus, the proposed method provides a link between concepts in graph theory, statistical inference and linear operators. We illustrate the utility of the recovered embedding for shape matching and categorisation on MPEG7 CE-Shape-1 dataset. We also compare our results to those yielded by alternatives.Full Tex
Healthier and Sustainable Food Systems: Integrating Underutilised Crops in a ‘Theory of Change Approach’
Increasingly, consumers are paying attention to healthier food diets, “healthy” food attributes (such as “freshness”, “naturalness” and “nutritional value”), and the overall sustainability of production and processing methods. Other significant trends include a growing demand for regional and locally produced/supplied and less processed food. To meet these demands, food production and processing need to evolve to preserve the raw material and natural food properties while ensuring such sustenance is healthy, tasty, and sustainable. In parallel, it is necessary to understand the influence of consumers’ practices in maintaining the beneficial food attributes from purchasing to consumption. The whole supply chain must be resilient, fair, diverse, transparent, and economically balanced to make different food systems sustainable. This chapter focuses on the role of dynamic value chains using biodiverse, underutilised crops to improve food system resilience and deliver foods with good nutritional and health properties while ensuring low environmental impacts, and resilient ecosystem functions