19 research outputs found

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Macroscopic Consequences of the Langmuir Waves Collapse

    No full text

    Spectral gap of shear Alfv́n waves in a periodic array of magnetic mirrors

    No full text
    A multiple magnetic mirror array is formed at the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] to study axial periodicity-influenced Alfv́n spectra. Shear Alfv́n waves (SAW) are launched by antennas inserted in the LAPD plasma and diagnosed by B-dot probes at many axial locations. Alfv́n wave spectral gaps and continua are formed similar to wave propagation in other periodic media due to the Bragg effect. The measured width of the propagation gap increases with the modulation amplitude as predicted by the solutions to Mathieu's equation. A two-dimensional finite-difference code modeling SAW in a mirror array configuration shows similar spectral features. Machine end-reflection conditions and damping mechanisms including electron-ion Coulomb collision and electron Landau damping are important for simulation. © 2008 American Institute of Physics
    corecore