133 research outputs found

    Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming

    Get PDF
    Water deficit tolerance is critical for plant fitness and survival, especially when successive drought events happen. Specific soil microorganisms are however able to improve plant tolerance to stresses, such as those displaying a 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Microorganisms adapted to dry conditions can be selected by plants over time because of properties such as sporulation, substrate preference, or cell-wall thickness. However, the complexity and interconnection between abiotic factors, like drought or soil management, and biotic factors, like plant species identity, make it difficult to elucidate the general selection processes of such microorganisms. Using a pot experiment in which wheat and barley were grown on conventional and organic farming soils, we determined the effect of water deficit history on soil microorganisms by comparing single and successive events of water limitation. The analysis showed that water deficit strongly impacts the composition of both the total microbial community (16S rRNA genes) and one of ACC deaminase-positive (acdS(+)) microorganisms in the rhizosphere. In contrast, successive dry conditions moderately influence the abundance and diversity of both communities compared to a single dry event. We revealed interactive effects of the farming soil type and the water deficit conditioning treatment. Indeed, possibly due to better nutrient status, plants grown on soils from conventional farming showed higher growth and were able to select more adapted microbial taxa. Some of them are already known for their plant-beneficial properties like the Actinobacteria Streptomyces, but interestingly, some Proteobacteria were also enriched after a water deficit history under conventional farming. Our approach allowed us to identify key microbial taxa promoting drought adaptation of cereals, thus improving our understanding of drought effects on plant-microbe interactions

    M01 as a novel drug enhancer for specifically targeting the blood-brain barrier

    Get PDF
    Drug delivery to the brain is limited for most pharmaceuticals by the blood-brain barrier (BBB) where claudin-5 dominates the paraendothelial tightening. For circumventing the BBB, we identified the compound M01 as a claudin-5 interaction inhibitor. M01 causes transient permeabilisation of the BBB depending on the concentration of small molecules in different cell culture models within 3 to 48 h. In mice, brain uptake of fluorescein peaked within the first 3 h after M01 injection and normalised within 48 h. Compared to the cytostatic paclitaxel alone, M01 improved delivery of paclitaxel to mouse brain and reduced orthotopic glioblastoma growth. Results on interactions of M01 with claudin-5 were incorporated into a binding model which suggests association of its aromatic parts with highly conserved residues of the extracellular domain of claudin-5 and adjacent transmembrane segments. Our results indicate the following mode of action: M01 preferentially binds to the extracellular claudin-5 domain, which weakens trans-interactions between adhering cells. Further decrease in membranous claudin-5 levels due to internalization and transcriptional downregulation enables the paracellular passage of small molecules. In summary, the first small molecule is introduced here as a drug enhancer, which specifically permeabilises the BBB for a sufficient interval for allowing neuropharmaceuticals to enter the brain

    Rapid onset of mafic magmatism facilitated by volcanic edifice collapse: MAFIC MAGMATISM FACILITATED BY VOLCANIC EDIFICE COLLAPSE

    Get PDF
    Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions
    corecore