269 research outputs found

    Site Changes on Sulfated Zirconia during n-Butane Isomerization: Quasi-In-Situ Adsorption Calorimetry Study with Butanes as Probes

    No full text
    Introduction: Sulfated zirconia (SZ) changes its performance for n-butane isomerization considerably with time on stream (TOS). To probe the relevant sites on active SZ we interrupted the reaction at different stages (induction period, maximum conversion), removed weakly adsorbed species, and measured adsorption isotherms and differential heats of adsorption (qdiff) of butanes. Experimental: The calorimeter cell was used as a fixed bed flow reactor (0.5 g SZ, 378 K, 1 kPa n-butane in N2); the feed was introduced through a capillary. Conversion was monitored by on-line GC. The reaction was stopped after various TOS, the cell was evacuated at 378 K, and placed in a SETARAM MS 70 calorimeter [1]. Adsorption of n- or isobutane was performed at 313 K. Results and Discussion: The isotherms at TOS = 0 could not be fit with a 1st order Langmuir model, indicating a more complicated, maybe activated adsorption process. The differential heats for n- and isobutane adsorption on the unreacted catalyst were similar. The adsorption isotherms for n- and isobutane indicate a decrease of the number of sites for these molecules during the induction period and with further increasing TOS. Throughout the catalytic reaction, the shape of the isotherms changed and the apparent reaction orders decreased approaching 1. At the state of maximum activity, SZ adsorbed similar amounts of n-butane and isobutane (ca. 20 µmol/g at 6 hPa), and the majority of these sites (coverages > 2 micromol/g) produced qdiff ca 40-50 kJ/mol for both adsorptives. At coverages < 2 micromol/g, qdiff for n-butane was as high as 85 kJ/mol, while for isobutane it never exceeded 50 kJ/mol. Quasi-in-situ adsorption microcalorimetry with butanes as probe molecules revealed that only a small number of sites on SZ changes with the performance in n-butane isomerization. 1. L.C. Jozefowicz, H.G. Karge, E.N. Coker, J. Phys. Chem. 98 (1994) 8053

    Interaction between Sulfated Zirconia and Alkanes: Prerequisites for Active Sites – Formation and Stability of Reaction Intermediates

    No full text
    Two sulfated zirconia catalysts were prepared via sulfation and calcination at 873 K of zirconium hydroxide aged at room temperature for 1 h (SZ-1) or aged at 373 K for 24 h (SZ-2). SZ-1 was active for n-butane isomerisation at 373 K; SZ-2 reached similar performance only at 473 K. Both materials contained about 9 wt% sulfate and were tetragonal. Due to a BET lower surface area (105 m2/g vs. 148 m2/g) SZ-1 featured a higher sulfate density, and XRD and EXAFS analysis showed larger (ca. 10 nm) and more well ordered crystals than for SZ-2. n-Butane TPD on SZ-1 showed a butene desorption peak at low temperature, whereas, no obvious butene desorption was observed with SZ-2, suggesting that SZ-1 has a higher oxidizing power at low temperature than SZ-2. The number of sites capable of dehydrogenation are less than 5 µmol/g, because the differential heats of n-butane adsorption as measured by microcalorimetry were 45–60 kJ/mol for higher coverages, indicating weak and reversible interaction. TAP experiments describe the adsorption and desorption behavior of n-butane at different activity states and are the basis for a simple adsorption model. Reactant pulses and purge experiments show that the active species, presumably formed in an oxidative dehydrogenation step, are stable at the surface under reaction conditions

    Structural and Active Site Characterization of Sulfated Zirconia Catalysts for Light Alkane Isomerization

    No full text
    Two different sulfated zirconia catalysts were produced through precipitation from zirconyl nitrate solutions, followed by aging of the precipitate either at 298 K for 1 h (SZ-1) or 373 K for 24 h (SZ-2). After drying, the samples were sulfated with ammonium sulfate and calcined for 3 h at 873 K. SZ-1 had a smaller surface area (90 m2 g-1) than SZ-2 (140 m2 g-1) but displayed a one order of magnitude higher maximum n-butane isomerization rate (373–423 K, 1–5 kPa n-butane at 101.3 kPa total pressure). Both materials consisted predominantly of tetragonal ZrO2, contained 9 wt% of sulfate, and adsorbed about 0.5 mmol g-1 NH3. Measurements of adsorption isotherms and differential heats for propane and iso-butane at 313 K reveal a larger number of adsorption sites on SZ-1 than on SZ-2, extrapolated to 1 kPa, 42 vs. 20 µmol g-1 (propane) and 120 vs. 44 µmol g-1 (iso-butane). At coverages > 2 µmol g-1 the heats were similar for both samples with both probes and decreased from 60 to 40 kJ mol-1. Temporal analysis of products measurements indicated shorter residence times for n-butane than for iso-butane, and SZ-1 retained both of these molecules longer than SZ-2. The activation energy for n-butane desorption was 45 kJ mol-1 for both samples. Interaction with pulses of CO2 suggested that non-sulfated, basic ZrO2 surface is exposed on SZ-2, consistent with the larger surface area at the same sulfate content as SZ-1. The results suggest that only a fraction of the sulfate groups participates in adsorption and that product desorption may be of importance

    Structural and Active Site Characterization of Sulfated Zirconia Catalysts for Light Alkane Isomerization

    No full text
    Sulfated zirconia (SZ) is active for light alkane isomerization at temperatures as low as 373 K [1]. The material has been investigated extensively in the past 2 decades [2] but so far no convincing structure-activity relationship has been established. Here, we report on the investigation of two different SZ materials with an interesting combination of properties. Both materials have a sulfate content of 9 wt.%; however, the material with lower specific surface area (SZ-1, 90 m2og-1) displays a maximum n-butane isomerization rate (373-423 K, 1-5 kPa n-butane at 101.3 kPa total pressure) that is about one order of magnitude higher than that of the material with higher specific surface area (SZ-2, 140 m2og-1). Both materials were produced through precipitation from zirconyl nitrate solution, followed by aging of the precipitate either at 298 K for 1 h (SZ-1) or 373 K for 24 h (SZ-2). After drying, the samples were sulfated with ammonium sulfate and calcined for 3 h at 873 K. Scanning electron microscopy showed typical particle sizes of 5 to 20 µm for SZ-1, and of 1 to 5 µm for SZ-2. X-ray diffraction and Zr K-edge X-ray absorption spectra identified both materials as predominantly tetragonal ZrO2, but SZ-2 exhibited smaller crystalline domains than SZ-1 (7.5 vs. 10 nm). Diffuse reflectance IR spectra taken during catalyst activation (523 K, inert gas) suggest that the sulfate structures on the two materials rearrange in a slightly different way during dehydration. This is tentatively attributed to different sulfate group densities that result from the ratios of sulfate content to surface area. By ammonia adsorption/desorption, the concentration of acid sites was determined to be 0.52 and 0.48 mmolog-1 for SZ-1 and SZ-2, respectively; this result is not reflected by the catalytic activities. Temporal analysis of products measurements indicated that the residence times for n-butane were shorter than for i-butane, and SZ-1 retained both these molecules longer than SZ-2. The activation energy for n-butane desorption was equivalent for both samples, i.e., 40-41 kJomol-1. Calorimetric measurements of the adsorption of reactant and product at 313 K produced the following results. At 0.3 kPa alkane pressure, SZ-1 and SZ-2 adsorbed similar amounts of n-butane (20 and 25 µmol), but very different amounts of i-butane (80 and 25 µmol). At coverages below 2 µmol the differential heats of adsorption of n-butane were much higher on SZ-2 than on SZ-1, while at higher coverages the heats were nearly identical for both samples and decreased from 60 to 40 kJomol-1. The samples did not differ with respect to the strength of interaction with i-butane, the heats decreased with increasing coverage from 60 to 40 kJomol-1. The results demonstrate that (i) typical SZ catalysts have fewer than 100 µmolog-1 sites, rendering identification by spectroscopic techniques difficult, and (ii) product desorption is a critical factor for the catalytic performance. References: [1] M. Hino, K. Arata, J. Chem. Soc. Chem. Comm. (1980) 851. [2] X. Song, A. Sayari, Catal. Rev. Sci. Eng., 38 (1996) 32

    Semiautomatic quality control of topographic reference datasets

    Get PDF
    The usefulness and acceptance of spatial information systems are mainly dependent on the quality of the underlying geodata. This paper describes a system for semiautomatic quality control of existing geospatial data via automatic image analysis using aerial images, high-resolution satellite imagery (IKONOS and RapidEye) and low-resolution satellite imagery (Disaster Monitoring Constellation, DMC) with mono- and multi-temporal approaches focusing on objects which cover most of the area of the topographic dataset. The goal of the developed system is to reduce the manual efforts to a minimum. We shortly review the system design and then we focus on the automatic components and their integration in a semiautomatic workflow for verification and update. A prototype of the system has been in use for several years. From the experience gained during this time we give a detailed report on the system performance in its application as well as an evaluation of the results

    Dutch translation and cultural adaptation of new LYMPH-Q- scales measuring impact on work and lymphedema worry

    Get PDF
    Background: Breast cancer-related lymphedema (BCRL) is a significant complication of breast cancer treatment that can impact patients’ quality of life. This study focuses on the translation and cultural adaptation of two new LYMPH-Q scales ‘Impact on Work’ and ‘Lymphedema worry’ into Dutch to assess the work-related challenges and worries experienced by patients with BCRL in the Netherlands. Methods: The translation process followed established guidelines from the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the World Health Organization (WHO). Forward and back translations, expert panel reviews, cognitive debriefing interviews with patients with BCRL, and proofreading were conducted to refine the Dutch translation of the scales. The translation aimed to ensure conceptual equivalence and cultural relevance. Results: The translation process resulted in the Dutch versions of the LYMPH-Q ‘Impact on Work’ and ‘Lymphedema worry’ scales. The forward translation revealed discrepancies in meaning, word order and synonyms. The back translation and review resulted in changes in item formulation. The expert panel meeting and cognitive debriefing interviews provided valuable input for further refinement. Conclusion: The translated LYMPH-Q ‘Impact on Work’ and ‘Lymphedema worry’ scales provide healthcare professionals with an instrument to assess and monitor the impact of BCRL on work-related challenges and on worries. This comprehensive translation process, involving patients with BCRL and experts, ensured the linguistic accuracy, cultural relevance, and clarity of the Dutch versions. The translated scales will contribute to a better understanding of the multifaceted impact of BCRL and facilitate the development of tailored interventions to improve patients’ well-being and functional outcomes.</p

    Activation and Isomerization of n-Butane on Sulfated Zirconia Model Systems - An Integrated Study Across the Materials and Pressure Gaps

    Get PDF
    Butane activation has been studied using three types of sulfated zirconia materials, single-crystalline epitaxial films, nanocrystalline films, and powders. A surface phase diagram of zirconia in interaction with SO3 and water was established by DFT calculations which was verified by LEED investigations on single-crystalline films and by IR spectroscopy on powders. At high sulfate surface densities a pyrosulfate species is the prevailing structure in the dehydrated state; if such species are absent, the materials are inactive. Theory and experiment show that the pyrosulfate can react with butane to give butene, H2O and SO2, hence butane can be activated via oxidative dehydrogenation. This reaction occurred on all investigated materials; however, isomerization could only be proven for powders. Transient and equilibrium adsorption measurements in a wide pressure and temperature range (isobars measured via UPS on nanocrystalline films, microcalorimetry and temporal analysis of products measurements on powders) show weak and reversible interaction of butane with a majority of sites but reactive interaction with < 5 µmol/g sites. Consistently, the catalysts could be poisoned by adding sodium to the surface in a ratio S/Na=35. Future research will have to clarify what distinguishes these few sites

    Dutch translation and cultural adaptation of new LYMPH-Q- scales measuring impact on work and lymphedema worry

    Get PDF
    Background: Breast cancer-related lymphedema (BCRL) is a significant complication of breast cancer treatment that can impact patients’ quality of life. This study focuses on the translation and cultural adaptation of two new LYMPH-Q scales ‘Impact on Work’ and ‘Lymphedema worry’ into Dutch to assess the work-related challenges and worries experienced by patients with BCRL in the Netherlands. Methods: The translation process followed established guidelines from the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the World Health Organization (WHO). Forward and back translations, expert panel reviews, cognitive debriefing interviews with patients with BCRL, and proofreading were conducted to refine the Dutch translation of the scales. The translation aimed to ensure conceptual equivalence and cultural relevance. Results: The translation process resulted in the Dutch versions of the LYMPH-Q ‘Impact on Work’ and ‘Lymphedema worry’ scales. The forward translation revealed discrepancies in meaning, word order and synonyms. The back translation and review resulted in changes in item formulation. The expert panel meeting and cognitive debriefing interviews provided valuable input for further refinement. Conclusion: The translated LYMPH-Q ‘Impact on Work’ and ‘Lymphedema worry’ scales provide healthcare professionals with an instrument to assess and monitor the impact of BCRL on work-related challenges and on worries. This comprehensive translation process, involving patients with BCRL and experts, ensured the linguistic accuracy, cultural relevance, and clarity of the Dutch versions. The translated scales will contribute to a better understanding of the multifaceted impact of BCRL and facilitate the development of tailored interventions to improve patients’ well-being and functional outcomes.</p

    Acid-Base Catalyzed Activation of n-Alkanes: Isomerization of n-Butane

    Get PDF
    Due to its unique activity for skeletal isomerization of short alkanes at low temperature, sulfated zirconia (SZ) is generally recognized as the most promising alternative for the zeolite based hydroisomerization catalysts. However, despite the large amount of investigations, several important topics related to SZ are still discussed controversially. Here we report on our detailed investigation of the mechanism of butane skeletal isomerization on SZ. Typically, SZ had an induction period followed by a period of virtually constant activity. The selectivity to isobutene was higher than 96%, the byproducts being propane and pentanes. The induction period can be related to the formation and accumulation of reactive intermediates on the catalyst surface. We show that the alkane activation is initiated via stoichiometric oxidative dehydrogenation of butane by sulphate species to butane, water and SO2. For the first time, direct experimental evidence is given for all reaction products formed by oxidative dehydrogenation. In situ IR spectroscopy and density functional calculations indicate that pyrosulfate or re-adsorbed SO3 species are the active species for the oxidation. Butene formed interacts with Bronsted acid sites and forms sec-butoxy groups which isomerize mono-molecularly to tert-butoxy groups, as deduced from the 100% selectivity to isobutane at zero conversion. The tert-butoxy group undergoes hydride transfer from n-butane, forming a new sec-butoxy group and isobutane. The lower selectivity to isobutane with increasing conversion is explained by the higher isobutene concentration which triggers a bimolecular pathway. Note that isobutane is kinetically a primary product, while propane and pentanes are secondary products formed in sequential reactions. The larger amount of propane with respect to pentanes for conversion above 40% is attributed to multiple alkylation reactions followed by cracking. Transient experiments showed conclusively that the isomerization of the carbenium ion is the rate-determining step in the chain sequence and that hydride transfer is in quasi equilibrium. A kinetic model for butane isomerization under differential conditions is presented showing that the overall rate of butane conversion is proportional to the rate constant of the monomolecular isomerization of the carbenium ion, the concentration of Bronsted acid sites, the partial pressure of the alkane and the concentration of the labile sulfate-based redox sites. We show here that the key to successful catalysts for skeletal isomerization does not lie in high acid strength, but that a subtle balance between redox and acid sites is necessary
    corecore