3 research outputs found

    Simulation and Optimization of Cyclone Dust Separators

    Get PDF
    Cyclone Dust Separators are devices often used to filter solid particles from flue gas. Such cyclones are supposed to filter as much solid particles from the carrying gas as possible. At the same time, they should only introduce a minimal pressure loss to the system. Hence, collection efficiency has to be maximized and pressure loss minimized. Both the collection efficiency and pressure loss are heavily influenced by the cyclones geometry. In this paper, we optimize seven geometrical parameters of an analytical cyclone model. Furthermore, noise variables are introduced to the model, representing the non-deterministic structure of the real-world problem. This is used to investigate robustness and sensitivity of solutions. Both the deterministic as well as the stochastic model are optimized with an SMS-EMOA. The SMS-EMOA is compared to a single objective optimization algorithm. For the harder, stochastic optimization problem, a surrogate-model-supported SMS-EMOA is compared against the model-free SMS-EMOA. The model supported approach yields better solutions with the same run-time budget

    Optimization of the Cyclone Separator Geometry via Multimodel Simulation

    Get PDF
    Cyclone separators are popular devices used to filter dust from the emitted flue gases. They are applied as pre-filters in many industrial processes including energy production and grain processing facilities. Increasing computational power and the availability of 3D printers provide new tools for the combination of modeling and experimentation, which necessary for constructing efficient cyclones. Several simulation tools can be run in parallel, e.g., long running CFD simulations can be accompanied by experiments with 3D printers. Furthermore, results from analytical and data-driven models can be incorporated. There are fundamental differences between these modeling approaches: some models, e.g., analytical models, use domain knowledge, whereas data-driven models do not require any information about the underlying processes. At the same time, data-driven models require input and output data, whereas analytical models do not. Combining results from models with different input-output structure is of great interest. This combination inspired the development of a new methodology. An optimization via multimodel simulation approach, which combines results from different models, is introduced. Using cyclonic dust separators (cyclones) as a real-world simulation problem, the feasibility of this approach is demonstrated. Pros and cons of this approach are discussed and experiences from the experiments are presented. Furthermore, technical problems, which are related to 3D-printing approaches, are discussed
    corecore