87 research outputs found

    The Ages of Elliptical Galaxies from Infrared Spectral Energy Distributions

    Get PDF
    The mean ages of early-type galaxies obtained from the analysis of optical spectra, give a mean age of 8 Gyr at z = 0, with 40% being younger than 6 Gyr. Independent age determinations are possible by using infrared spectra (5-21 microns), which we have obtained with the Infrared Spectrograph on the Spitzer Observatory. This age indicator is based on the collective mass loss rate of stars, where mass loss from AGB stars produces a silicate emission feature at 9-12 microns. This feature decreases more rapidly than the shorter wavelength continuum as a stellar population ages, providing an age indicator. From observations of 30 nearby early-type galaxies, 29 show a spectral energy distribution dominated by stars and one has significant emission from the ISM and is excluded. The infrared age indicators for the 29 galaxies show them all to be old, with a mean age of about 10 Gyr and a standard deviation of only a few Gyr. This is consistent with the ages inferred from the values of M/L_B, but is inconsistent with the ages derived from the optical line indices, which can be much younger. All of these age indicators are luminosity-weighted and should be correlated, even if multiple-age components are considered. The inconsistency indicates that there is a significant problem with either the infrared and the M/L_B ages, which agree, or with the ages inferred from the optical absorption lines.Comment: Accepted for publication in Ap

    A survey of the properties of early-type galaxies

    Get PDF
    A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results

    Small-Scale structure in the Galactic ISM: Implications for Galaxy Cluster Studies

    Full text link
    Observations of extragalactic objects need to be corrected for Galactic absorption and this is often accomplished by using the measured 21 cm HI column. However, within the beam of the radio telescope there are variations in the HI column that can have important effects in interpreting absorption line studies and X-ray spectra at the softest energies. We examine the HI and DIRBE/IRAS data for lines of sight out of the Galaxy, which show evidence for HI variations in of up to a factor of three in 1 degree fields. Column density enhancements would preferentially absorb soft X-rays in spatially extended objects and we find evidence for this effect in the ROSAT PSPC observations of two bright clusters of galaxies, Abell 119 and Abell 2142. For clusters of galaxies, the failure to include column density fluctuations will lead to systematically incorrect fits to the X-ray data in the sense that there will appear to be a very soft X-ray excess. This may be one cause of the soft X-ray excess in clusters, since the magnitude of the effect is comparable to the observed values.Comment: 16 pages, 9 figures, to appear in the Astrophysical Journal, vol. 597 (1 Nov 2003

    Cosmic Filaments in Superclusters

    Full text link
    Large-scale structure calculations show that modest overdensity filaments will connect clusters of galaxies and these filaments are reservoirs of baryons, mainly in gaseous form. To determine whether such filaments exist, we have examined the UV absorption line properties of three AGNs projected behind possible filaments in superclusters of galaxies; the AGNs lie within 3 Mpc of the centerlines of loci connecting clusters. All three lines of sight show absorption in Ly\alpha, Ly\beta, or/and OVI at redshifts within about 1300 km/s of the nearby galaxy clusters that would define the closest filaments. For one AGN, the absorption line redshifts are close to the emission line redshift of the AGN, so we cannot rule out self-absorption for this object. These absorption line associations with superclusters are unlikely to have occurred by chance, a result consistent with the presence of cosmic filaments within superclusters.Comment: 16 pages, 7 eps figures, Accepted for publication in Ap

    The Closest Damped Lyman Alpha System

    Full text link
    A difficulty of studying damped Lyman alpha systems is that they are distant, so one knows little about the interstellar medium of the galaxy. Here we report upon a damped Lyman alpha system in the nearby galaxy NGC 4203, which is so close (v_helio = 1117 km/s) and bright (B_o = 11.62) that its HI disk has been mapped. The absorption lines are detected against Ton 1480, which lies only 1.9' (12 h_50 kpc) from the center of NGC 4203. Observations were obtained with the Faint Object Spectrograph on HST (G270H grating) over the 2222-3277 Angstrom region with 200 km/s resolution. Low ionization lines of Fe, Mn, and Mg were detected, leading to metallicities of -2.29, -2.4, which are typical of other damped Lyman alpha systems, but well below the stellar metallicity of this type of galaxy. Most notably, the velocity of the lines is 1160 +- 10 km/s, which is identical to the HI rotational velocity of 1170 km/s at that location in NGC 4203, supporting the view that these absorption line systems can be associated with the rotating disks of galaxies. In addition, the line widths of the Mg lines give an upper limit to the velocity dispersion of 167 km/s, to the 99% confidence level.Comment: 4 pages LaTeX, including 1 figure and 1 table, uses emulateapj.sty. Accepted for publication by Astrophysical Journal Letter

    On the Lack of a Soft X-Ray Excess from Clusters of Galaxies

    Full text link
    A soft X-ray excess has been claimed to exist in and around a number of galaxy clusters and this emission has been attributed to the warm-hot intergalactic medium that may constitute most of the baryons in the local universe. We have re-examined a study of the XMM-Newton observations on this topic by Kaastra et al. (2003) and find that the X-ray excess (or deficit) depends upon Galactic latitude and appears to be most closely related to the surface brightness of the 1/4 keV emission, which is largely due to emission from the Local hot bubble and the halo of the Milky Way. We suggest that the presence of the soft X-ray excess is due to incorrect subtraction of the soft X-ray background. An analysis is performed where we choose a 1/4 keV background that is similar to the background near the cluster (and for similar HI column). We find that the soft X-ray excess largely disappears using our background subtraction and conclude that these soft X-ray excesses are not associated with the target clusters. We also show that the detections of "redshifted" O VII lines claimed by Kaastra et al. (2003) are correlated with solar system charge exchange emission suggesting that they are not extragalactic either.Comment: 8 pages, 6 figures, accepted for publication in Ap
    • 

    corecore