40 research outputs found

    Magnetization on rough ferromagnetic surfaces

    Get PDF
    Journal ArticleUsing Ising-model Monte Carlo simulations, we show a strong dependence of surface magnetization on surface roughness. On ferromagnetic surfaces with spin-exchange coupling larger than that of the bulk, the surface magnetic ordering temperature decreases toward the bulk Curie temperature with increasing roughness. For surfaces with spin-exchange coupling smaller than that of the bulk, a crossover behavior occurs: at low temperature, the surface magnetization decreases with increasing roughness; at high temperature, the reverse is true

    Mechanical and Vacuum Stability Studies for the LHC Experiments Upgrade

    No full text
    In April 2015, the Large Hadron Collider (LHC) has entered its second operational period that will last for 3 years with expected end of the operations at the beginning of 2019. Afterward, the LHC will undergo a long shutdown (LS2) for upgrade and maintenance. The four LHC experiments, ATLAS, ALICE, CMS and LHCb, will experience an important upgrade too. From the design point of view, the LS2 experimental beam vacuum upgrade requires multi-disciplinary approach: based on the geometrical envelope defined by experiment, the vacuum chambers size and shape must be optimized. This included Monte Carlo pressure profile simulations and vacuum stability studies in order to meet the specific pressure requests in the interaction region. Together with vacuum studies the structural analysis are performed in order to optimise chambers thickness and position of the operational and maintenance supports. The material selection for vacuum chambers in the experimental area follows the CERN ALARA (as low as reasonably achievable) principle. This paper gives an overview of the LS2 experimental vacuum sectors upgrades. The most extensive design studies, done for the two experiments CMS and ALICE are discussed in detail

    Summary of Beam Vacuum Activities Held during the LHC 2008-2009 Shutdown

    No full text
    At the start of the CERN Large Hadron Collider (LHC) 2008-2009 shutdown, all the LHC experimental vacuum chambers were vented to neon atmosphere. They were later pumped down shortly before beam circulation. Meanwhile, 2.3 km of vacuum beam pipes with NEG coatings were vented to air to allow the installation or repair of several components such as roman pot, magnets kicker, collimators, rupture disks and masks and reactivated thereafter. Beside these standard operations, “fast exchanges” of vacuum components and endoscopies inside cryogenic beam vacuum chambers were performed. This paper presents a summary of all the beam vacuum activities held during this period and the achieved vacuum performance

    Vacuum Performances of Some LHC Collimators

    No full text
    With the first beams circulating in the CERN Large Hadron Collider (LHC), pressure increases are observed at some collimators positions. This paper describes the collimators vacuum performances measured in the laboratory and also performances obtained in the machine. Based on these observations, estimations of some operational behavior such as pressure increase and NEG reactivation scenario are give

    LHC Beam Vacuum Evolution During 2015 Machine Operation

    No full text
    The LHC successfully returned to operation in April, 2015 after almost 2 years of Long Shutdown 1 (LS1) for various upgrade and consolidation programs. During 2015 operation, the LHC operated for more than 1000 fills. The 2015 LHC proton physics ended with 2244 bunches per beam circulating with 25 ns bunch spacing at top energy of 6.5 TeV. This paper summarizes the dynamic vacuum observations in different locations along the LHC during dedicated fills as well as during physics runs with both 50 ns and 25 ns bunch spacing. The causes for the dynamic pressure rises are investigated and are presented. A clear beam conditioning effect is observed, as well as a so-called de-conditioning effect. Furthermore, for the experimental areas, the dynamic pressure evolution is also presented

    VACUUM PERFORMANCE OF AMORPHOUS CARBON COATING AT CRYOGENIC TEMPERATURE WITH PRESENCE OF PROTON BEAMS

    No full text
    Amorphous carbon (a-C) coating is the baseline electron multipacting mitigation strategy proposed for the Inner Triplets (IT) in the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). As of 2014, the COLD bore EXperiment (COLDEX) is qualifying the performance of a-C coating at cryogenic temperature in a LHC type cryogenic vacuum system. In this paper, the experimental results following a cryogenic vacuum characterization of a-C coating in the 5 to 150 K temperature range are reviewed. We discuss the dynamic pressure rise, gas composition, dissipated heat load and electron activity observed within an accumulated beam time of 9 Ah. The results of dedicated experiments including pre-adsorption of different gas species (H2, CO) on the a-C coating are iscussed. Based of phenomenological modeling, up-to-date secondary emission input parameters for a-C coatings are retrieved for electron cloud build-up simulations. Finally, first implications for the HL-LHC ITs design are drawn

    Present Quality Assurance for the LHC Beam Vacuum System and its Future Improvement

    No full text
    During the Long Shutdown 1 (LS1), the LHC beam vacuum system was upgraded to minimize dynamic vacuum effects like stimulated desorption and beam-induced electron multipacting. A quality assurance plan was mandatory due to the demanding vacuum performance and the limited access to the equipment during the following operation period. Laboratory assessment tests and underground interventions were performed following well-defined and approved procedures. All vacuum related activities were documented and written reports stored in dedicated databases. Quality controls were performed to find mechanical, cabling and equipment functionality non-conformities. Possible issues were identified, classified and tracked in a non-conformity database for future corrective actions. This contribution give an overview of the quality assurance policy followed during the LS1 and the non-conformities reported after quality control. Possible future improvements are also discussed

    Outgassing rates of PEEK, Kapton® and Vespel® foils

    No full text
    The outgassing rates of PEEK, Vespel® and Kapton® foils as a function of time and thickness have been studied through a series of pump-down tests. Samples of at least five different thicknesses for each material, exposed to normal levels of moisture in the air (30-65% R.H.), were pumped in a dedicated setup. The pump down curves were fitted with a Fickian diffusion model. A discrepancy between the model and the experimental results was observed for extended pump down time. A new empirical model was proposed and applied with excellent results. The discrepancy could be due to micro-voids in the vitreous parts of the polymers as described by the dual model

    Vacuum Performance of Amorphous Carbon Coating at Cryogenic Temperature with Presence of Proton Beams

    No full text
    Amorphous carbon (a-C) coating is the baseline electron multipacting mitigation strategy proposed for the Inner Triplets (IT) in the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). As of 2014, the COLD bore EXperiment (COLDEX) is qualifying the performance of a-C coating at cryogenic temperature in a LHC type cryogenic vacuum system. In this paper, the experimental results following a cryogenic vacuum characterization of a-C coating in the 5 to 150 K temperature range are reviewed. We discuss the dynamic pressure rise, gas composition, dissipated heat load and electron activity observed within an accumulated beam time of 9 Ah. The results of dedicated experiments including pre-adsorption of different gas species (H2, CO) on the a-C coating are discussed. Based of phenomenological modeling, up-to-date secondary emission input parameters for a-C coatings are retrieved for electron cloud build-up simulations. Finally, first implications for the HL-LHC ITs design are drawn

    Upgrade of the CMS Experimental Beam Vacuum During LS2

    No full text
    Starting from December 2018, the Large Hadron Collider (LHC) is going to interrupt its physic operations for more than two years within the period called second long shutdown (LS2). The Compact Muon Solenoid (CMS) experiment will undergo the biggest upgrade of its experimental beam vacuum system since the first operations in 2008. The new experimental vacuum layout should comply with demanding structural, vacuum, integration and physics requirements. Moreover, the new layout should be compatible with foreseen engineering changes of the detector and the machine during the upgrade phase of High-Luminosity LHC in LS3. This paper gives an overview of the CMS LS2 experimental vacuum sectors upgrades. Both design and production phase of the new vacuum layout is discussed in detail
    corecore