10 research outputs found

    Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease

    Get PDF
    Although intrastriatal transplantation of fetal cells for the treatment of Parkinson’s disease had shown encouraging results in initial open-label clinical trials, subsequent double-blind studies reported more debatable outcomes. These studies highlighted the need for greater preclinical analysis of the parameters that may influence the success of cell therapy. While much of this has focused on the cells and location of the transplants, few have attempted to replicate potentially critical patient centered factors. Of particular relevance is that patients will be under continued L-DOPA treatment prior to and following transplantation, and that typically the grafts will not be immunologically compatible with the host. The aim of this study was therefore to determine the effect of chronic L-DOPA administered during different phases of the transplantation process on the survival and function of grafts with differing degrees of immunological compatibility. To that end, unilaterally 6-OHDA lesioned rats received sham surgery, allogeneic or xenogeneic transplants, while being treated with L-DOPA before and/or after transplantation. Irrespective of the L-DOPA treatment, dopaminergic grafts improved function and reduced the onset of L-DOPA induced dyskinesia. Importantly, although L-DOPA administered post transplantation was found to have no detrimental effect on graft survival, it did significantly promote the immune response around xenogeneic transplants, despite the administration of immunosuppressive treatment (cyclosporine). This study is the first to systematically examine the effect of L-DOPA on graft tolerance, which is dependent on the donor-host compatibility. These findings emphasize the importance of using animal models that adequately represent the patient paradigm

    Comparison of rating scales used to evaluate l-DOPA-induced dyskinesia in the 6-OHDA lesioned rat

    No full text
    Abnormal involuntary movement (AIM) rating scales are frequently used to study the mechanisms underlying l-DOPA-induced dyskinesia (LID) in 6-OHDA lesioned rodents and the propensity of novel treatments for Parkinson's disease to induce or alleviate similar abnormal behaviours. Despite the existence of at least one well validated method, other AIM scales are also in use. Moreover, there have been developments and variations in the original scales and their methods of use, without re-validation. In this study, 6-OHDA medial forebrain bundle lesioned Sprague–Dawley rats were treated with chronic l-DOPA 6 mg/kg/day for 5 weeks followed by 12 mg/kg/day for another 5 weeks. Rats were assessed weekly by simultaneous ratings on four published AIM and stereotypy scales with concurrent recording of rotation, over 3 hours following l-DOPA injection. Three contemporary AIM scales have then been validated pharmacologically using agents that are known to reduce LID clinically and in primates (amantadine) or to interfere with the activity of l-DOPA (the D1 and D2 dopamine receptor antagonists, SCH-23390 and raclopride) respectively. We also demonstrate that AIM, stereotypic and rotational behaviour are distinct motor dysfunctions induced by chronic and acute treatment of l-DOPA, and should be assessed separately. The undertaking of assessments at multiple time points is essential especially when testing the efficacy of new potential anti-dyskinetic treatments. Importantly critical to all AIM and rotation testing is the internal validation of both the scale being used and the environment being used

    Pharmacological modulation of amphetamine-induced dyskinesia in transplanted hemi-parkinsonian rats

    No full text
    Foetal cell transplantation in patients with Parkinson’s disease can induce motor complications independent of l-DOPA administration, known as graft-induced dyskinesia. In the 6-OHDA lesioned rat model of Parkinson’s disease, post-transplantation abnormal movements can develop in response to an amphetamine challenge, a behaviour which is used to model graft-induced dyskinesia. Although l-DOPA-induced dyskinesia has been well characterised pharmacologically, we lack knowledge on the modulation of post-transplantation amphetamine-induced dyskinesia which may shed light on the mechanisms underlying graft-induced dyskinesia. We assessed a series of drugs effective at reducing l-DOPA-induced dyskinesia against post-transplantation amphetamine-induced dyskinesia. Agents include: dopaminergic antagonists (D1: CP94253; D2: SCH-22390; D3: nafadotride), serotonergic agonists (5-HT1A: 8-OH-DPAT; 5-HT1B: CP94253), opioid antagonist (μ: naloxone), cannabinoid agonist (CB1: WIN55, 212-2), adrenergic antagonist (α1 and α2: yohimbine) and glutamatergic antagonists (NMDA: amantadine and MK-801; mGluR5: MTEP; AMPA: IEM1460). Abnormal involuntary movements in response to amphetamine were decreased by SCH-22390, raclopride, CP94253 and 8-OH-DPAT, yet were unaltered by naloxone, WIN55, 212-2, yohimbine, amantadine, MTEP and IEM1460. Unusually, MK-801 increased the appearance of amphetamine-induced dyskinesia. The results suggest that dopaminergic, serotoninergic and glutamatergic systems are likely to have a fundamental role in the development of graft-induced dyskinesias, which are mechanistically distinct from l-DOPA-induced behvaviours. Importantly, the expression of D1 and D2 receptors was unrelated to the severity of AIMs

    GDNF-mediated rescue of the nigrostriatal system depends on the degree of degeneration

    No full text
    Glial cell-line derived neurotrophic factor (GDNF) is a promising therapeutic molecule to treat Parkinson’s disease. Despite an excellent profile in experimental settings, clinical trials testing GDNF have failed. One of the theories to explain these negative outcomes is that the clinical trials were done in late-stage patients that have advanced nigrostriatal degeneration and may therefore not respond to a neurotrophic factor therapy. Based on this idea, we tested if the stage of nigrostriatal degeneration is important for GDNF-based therapies. Lentiviral vectors expressing regulated GDNF were delivered to the striatum of rats to allow GDNF expression to be turned on either while the nigrostriatal system was degenerating or after the nigrostriatal system had been fully lesioned by 6-OHDA. In the group of animals where GDNF expression was on during degeneration, neurons were rescued and there was a reversal of motor deficits. Turning GDNF expression on after the nigrostriatal system was lesioned did not rescue neurons or reverse motor deficits. In fact, these animals were indistinguishable from the control groups. Our results suggest that GDNF can reverse motor deficits and nigrostriatal pathology despite an ongoing nigrostriatal degeneration, if there is still a sufficient number of remaining neurons to respond to therapy

    Destabilizing Domains Enable Long-Term and Inert Regulation of GDNF Expression in the Brain

    No full text
    Regulation of therapeutic transgene expression can increase the safety of gene therapy interventions, especially when targeting critical organs such as the brain. Although several gene expression systems have been described, none of the current systems has the required safety profile for clinical applications. Our group has previously adapted a system for novel gene regulation based on the destabilizing domain degron technology to successfully regulate glial cell-line derived neurotrophic factor in the brain (GDNF-F-DD). In the present study, we used GDNF-F-DD as a proof-of-principle molecule to fully characterize DD regulation in the brain. Our results indicate that DD could be regulated in a dose-dependent manner. In addition, GDNF-F-DD could also be induced in vivo repeatedly, without loss of activity or efficacy in vivo. Finally, DD regulation was able to be sustained for 24 weeks without loss of expression or any overt toxicity. The present study shows that DD has great potential to regulate gene expression in the brain

    Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD

    No full text
    Preclinical assessment of the therapeutic potential of dopamine (DA) neuron replacement in Parkinson's disease (PD) has primarily been performed in the 6-hydroxydopamine toxin model. While this is a good model to assess graft function, it does not reflect the pathological features or progressive nature of the disease. In this study, we establish a humanized transplantation model of PD that better recapitulates the main disease features, obtained by coinjection of preformed human α-synuclein (α-syn) fibrils and adeno-associated virus (AAV) expressing human wild-type α-syn unilaterally into the rat substantia nigra (SN). This model gives rise to DA neuron dysfunction and progressive loss of DA neurons from the SN and terminals in the striatum, accompanied by extensive α-syn pathology and a prominent inflammatory response, making it an interesting and relevant model in which to examine long-term function and integrity of transplanted neurons in a PD-like brain. We transplanted DA neurons derived from human embryonic stem cells (hESCs) into the striatum and assessed their survival, growth, and function over 6 to 18 wk. We show that the transplanted cells, even in the presence of ongoing pathology, are capable of innervating the DA-depleted striatum. However, on closer examination of the grafts, we found evidence of α-syn pathology in the form of inclusions of phosphorylated α-syn in a small fraction of the grafted DA neurons, indicating host-to-graft transfer of α-syn pathology, a phenomenon that has previously been observed in PD patients receiving fetal tissue grafts but has not been possible to demonstrate and study in toxin-based animal models

    Modeling Parkinson’s disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain

    No full text
    Although a causative role of α-synuclein (α-syn) is well established in Parkinson’s disease pathogenesis, available animal models of synucleinopathy do not replicate the full range of cellular and behavioral changes characteristic of the human disease. This study was designed to generate a more faithful model of Parkinson’s disease by injecting human α-syn fibril seeds into the rat substantia nigra (SN), in combination with adenoassociated virus (AAV)-mediated overexpression of human α-syn, at levels that, by themselves, are unable to induce acute dopamine (DA) neurodegeneration. We show that the ability of human α-syn fibrils to trigger Lewy-like α-synuclein pathology in the affected DA neurons is dramatically enhanced in the presence of elevated levels of human α-syn. This synucleinopathy was fully developed already 10 days after fibril injection, accompanied by progressive degeneration of dopaminergic neurons in SN, neuritic swelling, reduced striatal DA release, and impaired motor behavior. Moreover, a prominent inflammatory response involving both activation of resident microglia and infiltration of CD4+ and CD8+ T lymphocytes was observed. Hypertrophic microglia were found to enclose or engulf cells and processes containing Lewy-like α-syn aggregates. α-Syn aggregates were also observed inside these cells, suggesting transfer of phosphorylated α-syn from the affected nigral neurons. The nigral pathology triggered by fibrils in combination with AAV-mediated overexpression of α-syn reproduced many of the cardinal features of the human disease. The short time span and the distinct sequence of pathological and degenerative changes make this combined approach attractive as an experimental model for the assessment of neuroprotective and disease-modifying strategies

    GDNF-mediated rescue of the nigrostriatal system depends on the degree of degeneration

    No full text
    Glial cell-line derived neurotrophic factor (GDNF) is a promising therapeutic molecule to treat Parkinson’s disease. Despite an excellent profile in experimental settings, clinical trials testing GDNF have failed. One of the theories to explain these negative outcomes is that the clinical trials were done in late-stage patients that have advanced nigrostriatal degeneration and may therefore not respond to a neurotrophic factor therapy. Based on this idea, we tested if the stage of nigrostriatal degeneration is important for GDNF-based therapies. Lentiviral vectors expressing regulated GDNF were delivered to the striatum of rats to allow GDNF expression to be turned on either while the nigrostriatal system was degenerating or after the nigrostriatal system had been fully lesioned by 6-OHDA. In the group of animals where GDNF expression was on during degeneration, neurons were rescued and there was a reversal of motor deficits. Turning GDNF expression on after the nigrostriatal system was lesioned did not rescue neurons or reverse motor deficits. In fact, these animals were indistinguishable from the control groups. Our results suggest that GDNF can reverse motor deficits and nigrostriatal pathology despite an ongoing nigrostriatal degeneration, if there is still a sufficient number of remaining neurons to respond to therapy
    corecore