4 research outputs found

    Age-related changes to macrophages are detrimental to fracture healing in mice.

    Get PDF
    The elderly population suffers from higher rates of complications during fracture healing that result in increased morbidity and mortality. Inflammatory dysregulation is associated with increased age and is a contributing factor to the myriad of age-related diseases. Therefore, we investigated age-related changes to an important cellular regulator of inflammation, the macrophage, and the impact on fracture healing outcomes. We demonstrated that old mice (24 months) have delayed fracture healing with significantly less bone and more cartilage compared to young mice (3 months). The quantity of infiltrating macrophages into the fracture callus was similar in old and young mice. However, RNA-seq analysis demonstrated distinct differences in the transcriptomes of macrophages derived from the fracture callus of old and young mice, with an up-regulation of M1/pro-inflammatory genes in macrophages from old mice as well as dysregulation of other immune-related genes. Preventing infiltration of the fracture site by macrophages in old mice improved healing outcomes, with significantly more bone in the calluses of treated mice compared to age-matched controls. After preventing infiltration by macrophages, the macrophages remaining within the fracture callus were collected and examined via RNA-seq analysis, and their transcriptome resembled macrophages from young calluses. Taken together, infiltrating macrophages from old mice demonstrate detrimental age-related changes, and depleting infiltrating macrophages can improve fracture healing in old mice

    Stimulating Fracture Healing in Ischemic Environments: Does Oxygen Direct Stem Cell Fate during Fracture Healing?

    Get PDF
    Bone fractures represent an enormous societal and economic burden as one of the most prevalent causes of disability worldwide. Each year, nearly 15 million people are affected by fractures in the United States alone. Data indicate that the blood supply is critical for fracture healing; as data indicate that concomitant bone and vascular injury are major risk factors for non-union. However, the various role(s) that the vasculature plays remains speculative. Fracture stabilization dictates stem cell fate choices during repair. In stabilized fractures stem cells differentiate directly into osteoblasts and heal the injury by intramembranous ossification. In contrast, in non-stable fractures stem cells differentiate into chondrocytes and the bone heals through endochondral ossification, where a cartilage template transforms into bone as the chondrocytes transform into osteoblasts. One suggested role of the vasculature has been to participate in the stem cell fate decisions due to delivery of oxygen. In stable fractures, the blood vessels are thought to remain intact and promote osteogenesis, while in non-stable fractures, continual disruption of the vasculature creates hypoxia that favors formation of cartilage, which is avascular. However, recent data suggests that non-stable fractures are more vascularized than stable fractures, that oxygen does not appear associated with differentiation of stem cells into chondrocytes and osteoblasts, that cartilage is not hypoxic, and that oxygen, not sustained hypoxia, is required for angiogenesis. These unexpected results, which contrast other published studies, are indicative of the need to better understand the complex, spatio-temporal regulation of vascularization and oxygenation in fracture healing. This work has also revealed that oxygen, along with the promotion of angiogenesis, may be novel adjuvants that can stimulate healing in select patient populations
    corecore