2 research outputs found

    Solar Radiation Projections of Cmip5 Models for South of Brazil

    Full text link
    The most critical factors in the acceleration of climate and environmental changes are related to the industrial development and consequently to an increase in the demand for electricity. Looking for measures that minimize impacts to the environment, alternative energy sources are gaining more and more space in the Brazilian energy matrix. Brazil presents a great solar potential for the generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of the energy use. Due to the above, this article aims to verify the climatic variability corresponding to the variations in solar radiation patterns, in the face of climate change scenarios. The database used in this research is part of the Phase 5 Intercomparison of Matching Models (CMIP5). Was used the RCP 8.5 that scenario is considered the most pessimistic for the 21st century and is consistent with no policy change to reduce emissions and strong dependence on fossil fuels. It is important, first of all, to determine its availability in order to enable the use of solar radiation as a source of energy in a given location and / or region. The climatic projections, based on the pessimistic scenario, in a 75-year period (2026-2100) showed a fall in solar radiation in all of Rio Grande do Sul, reaching 12% in the eastern region of the state. A concern with the factors that influence the pessimistic perspectives of this scenario, as it may affect a possible production of electric energy from solar radiation

    Evaluation Rainfall Regime at the Hydroelectric Power Plant Toward Climate Change

    Get PDF
    The hydroelectric plants are first in the Brazilian energy matrix, so irregularities in the rainfall regime can affect the energy generation, thus evidencing the need to know the rainfall distribution in the studied area. This work aimed to evaluate possible analysis of the impacts of climate change on the rainfall regime in the Machadinho hydroelectric region. For the research development, the IPCC-AR5 pessimistic scenario was used, representing a scenario with a continuous population growth and high carbon dioxide emissions. From the historical series and organized projections, precipitation anomalies were calculated. Analyzing the difference between the average of the month and the climatological normal, it was inferred that the model used presented a positive trend for precipitation in the period from 2026 - 2100, projecting anomalies between 25 and 200 mm per month. A greater amplitude is observed in the precipitation of 2076-2100, indicating an increase in the occurrence of extreme events of precipitation, mainly in the spring period. Considering that the rains in the Machadinho hydroelectric region are increasing in the scenarios analyzed, the average water level in the reservoir of the plant tends to increase
    corecore