8,865 research outputs found

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Limits on the validity of the thin-layer model of the ionosphere for radio interferometric calibration

    Full text link
    For a ground-based radio interferometer observing at low frequencies, the ionosphere causes propagation delays and refraction of cosmic radio waves which result in phase errors in the received signal. These phase errors can be corrected using a calibration method that assumes a two-dimensional phase screen at a fixed altitude above the surface of the Earth, known as the thin-layer model. Here we investigate the validity of the thin-layer model and provide a simple equation with which users can check when this approximation can be applied to observations for varying time of day, zenith angle, interferometer latitude, baseline length, ionospheric electron content and observing frequency.Comment: 8 pages, 10 figures, accepted MNRA

    Dynamics and delocalisation transition for an interface driven by a uniform shear flow

    Full text link
    We study the effect of a uniform shear flow on an interface separating the two broken-symmetry ordered phases of a two-dimensional system with nonconserved scalar order parameter. The interface, initially flat and perpendicular to the flow, is distorted by the shear flow. We show that there is a critical shear rate, \gamma_c, proportional to 1/L^2, (where L is the system width perpendicular to the flow) below which the interface can sustain the shear. In this regime the countermotion of the interface under its curvature balances the shear flow, and the stretched interface stabilizes into a time-independent shape whose form we determine analytically. For \gamma > \gamma_c, the interface acquires a non-zero velocity, whose profile is shown to reach a time-independent limit which we determine exactly. The analytical results are checked by numerical integration of the equations of motion.Comment: 5 page

    Dynamical properties of the hypercell spin glass model

    Full text link
    The spreading of damage technique is used to study the sensibility to initial conditions in a heath bath Monte Carlo simulation of the spin glass hypercubic cell model. Since the hypercubic cell in dimension 2D and the hypercubic lattice in dimension D resemble each other closely at finite dimensions and both converge to mean field when dimension goes to infinity, it allows us to study the effect of dimensionality on the dynamical behavior of spin glasses.Comment: 13 pages, RevTex, 8 ps figure

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Possible Glassiness in a Periodic Long-Range Josephson Array

    Full text link
    We present an analytic study of a periodic Josephson array with long-range interactions in a transverse magnetic field. We find that this system exhibits a first-order transition into a phase characterized by an extensive number of states separated by barriers that scale with the system size; the associated discontinuity is small in the limit of weak applied field, thus permitting an explicit analysis in this regime.Comment: 4 pages, 2 Postscript figures in a separate file

    On the Use of Finite-Size Scaling to Measure Spin-Glass Exponents

    Full text link
    Finite-size scaling (FSS) is a standard technique for measuring scaling exponents in spin glasses. Here we present a critique of this approach, emphasizing the need for all length scales to be large compared to microscopic scales. In particular we show that the replacement, in FSS analyses, of the correlation length by its asymptotic scaling form can lead to apparently good scaling collapses with the wrong values of the scaling exponents.Comment: RevTeX, 5 page

    The mechanical response of semiflexible networks to localized perturbations

    Full text link
    Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the existence of distinct regimes of elastic response, in which the strain field is either uniform (affine) or non-uniform (non-affine) under external stress. Associated with these regimes, it has been further suggested that a new fundamental length scale emerges, which characterizes the scale for the crossover from non-affine to affine deformations. Here, we extend these studies by probing the response to localized forces and force dipoles. We show that the previously identified nonaffinity length [D.A. Head et al. PRE 68, 061907 (2003).] controls the mesoscopic response to point forces and the crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to clarify the crossover to continuum elasticity and the role of finite-size effect

    Evidence for the droplet/scaling picture of spin glasses

    Full text link
    We have studied the Parisi overlap distribution for the three dimensional Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the full Parisi replica symmetry breaking, just as was also observed in recent Monte Carlo simulations on a cubic lattice. However, for lower temperatures our data agree with predictions from the droplet or scaling picture. The failure to see droplet model behaviour in Monte Carlo simulations is due to the fact that all existing simulations have been done at temperatures too close to the transition temperature so that sytem sizes larger than the correlation length have not been achieved.Comment: 4 pages, 6 figure
    corecore