174 research outputs found

    Glassy dynamics near zero temperature

    Full text link
    We numerically study finite-dimensional spin glasses at low and zero temperature, finding evidences for (i) strong time/space heterogeneities, (ii) spontaneous time scale separation and (iii) power law distributions of flipping times. Using zero temperature dynamics we study blocking, clustering and persistence phenomena

    Zero-Temperature Dynamics of Ising Spin Systems Following a Deep Quench: Results and Open Problems

    Full text link
    We consider zero-temperature, stochastic Ising models with nearest-neighbor interactions and an initial spin configuration chosen from a symmetric Bernoulli distribution (corresponding physically to a deep quench). Whether a final state exists, i.e., whether each spin flips only finitely many times as time goes to infinity (for almost every initial spin configuration and realization of the dynamics), or if not, whether every spin - or only a fraction strictly less than one - flips infinitely often, depends on the nature of the couplings, the dimension, and the lattice type. We review results, examine open questions, and discuss related topics.Comment: 10 pages (LaTeX); to appear in Physica

    Fate of Zero-Temperature Ising Ferromagnets

    Full text link
    We investigate the relaxation of homogeneous Ising ferromagnets on finite lattices with zero-temperature spin-flip dynamics. On the square lattice, a frozen two-stripe state is apparently reached approximately 1/4 of the time, while the ground state is reached otherwise. The asymptotic relaxation is characterized by two distinct time scales, with the longer stemming from the influence of a long-lived diagonal stripe ``defect''. In greater than two dimensions, the probability to reach the ground state rapidly vanishes as the size increases and the system typically ends up wandering forever within an iso-energy set of stochastically ``blinking'' metastable states.Comment: 4 pages in column format, 6 figure

    Critical points of Wang-Yau quasi-local energy

    Full text link
    In this paper, we prove the following theorem regarding the Wang-Yau quasi-local energy of a spacelike two-surface in a spacetime: Let Σ\Sigma be a boundary component of some compact, time-symmetric, spacelike hypersurface Ω\Omega in a time-oriented spacetime NN satisfying the dominant energy condition. Suppose the induced metric on Σ\Sigma has positive Gaussian curvature and all boundary components of Ω\Omega have positive mean curvature. Suppose HH0H \le H_0 where HH is the mean curvature of Σ\Sigma in Ω\Omega and H0H_0 is the mean curvature of Σ\Sigma when isometrically embedded in R3R^3. If Ω\Omega is not isometric to a domain in R3R^3, then 1. the Brown-York mass of Σ\Sigma in Ω\Omega is a strict local minimum of the Wang-Yau quasi-local energy of Σ\Sigma, 2. on a small perturbation Σ~\tilde{\Sigma} of Σ\Sigma in NN, there exists a critical point of the Wang-Yau quasi-local energy of Σ~\tilde{\Sigma}.Comment: substantially revised, main theorem replaced, Section 3 adde

    Metastable States in Spin Glasses and Disordered Ferromagnets

    Full text link
    We study analytically M-spin-flip stable states in disordered short-ranged Ising models (spin glasses and ferromagnets) in all dimensions and for all M. Our approach is primarily dynamical and is based on the convergence of a zero-temperature dynamical process with flips of lattice animals up to size M and starting from a deep quench, to a metastable limit. The results (rigorous and nonrigorous, in infinite and finite volumes) concern many aspects of metastable states: their numbers, basins of attraction, energy densities, overlaps, remanent magnetizations and relations to thermodynamic states. For example, we show that their overlap distribution is a delta-function at zero. We also define a dynamics for M=infinity, which provides a potential tool for investigating ground state structure.Comment: 34 pages (LaTeX); to appear in Physical Review

    Low Energy Excitations in Spin Glasses from Exact Ground States

    Get PDF
    We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined exactly for system sizes up to 12^3 spins using a branch and cut algorithm. The data are consistent with a picture where the surface of the excitations is not space-filling, such as the droplet or the ``TNT'' picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of the excitations scales with their size with a small exponent \theta', which is compatible with zero if we allow moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling. Finally, we analyze the performance of our branch and cut algorithm, finding that it is correlated with the existence of large-scale,low-energy excitations.Comment: 18 Revtex pages, 16 eps figures. Text significantly expanded with more discussion of the numerical data. Fig.11 adde

    The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states

    Get PDF
    The nature of the zero temperature ordering transition in the 3D Gaussian random field Ising magnet is studied numerically, aided by scaling analyses. In the ferromagnetic phase the scaling of the roughness of the domain walls, wLζw\sim L^\zeta, is consistent with the theoretical prediction ζ=2/3\zeta = 2/3. As the randomness is increased through the transition, the probability distribution of the interfacial tension of domain walls scales as for a single second order transition. At the critical point, the fractal dimensions of domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two distinct physically important fractal dimensions. These dimensions are argued to be related to combinations of the energy scaling exponent, θ\theta, which determines the violation of hyperscaling, the correlation length exponent ν\nu, and the magnetization exponent β\beta. The value β=0.017±0.005\beta = 0.017\pm 0.005 is derived from the magnetization: this estimate is supported by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating the disordered phase with one ground state from the ordered phase with two ground states. The array of results are shown to be consistent with a scaling picture and a geometric description of the influence of boundary conditions on the spins. The details of the algorithm used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure

    Persistence in higher dimensions : a finite size scaling study

    Full text link
    We show that the persistence probability P(t,L)P(t,L), in a coarsening system of linear size LL at a time tt, has the finite size scaling form P(t,L)Lzθf(tLz)P(t,L)\sim L^{-z\theta}f(\frac{t}{L^{z}}) where θ\theta is the persistence exponent and zz is the coarsening exponent. The scaling function f(x)xθf(x)\sim x^{-\theta} for x1x \ll 1 and is constant for large xx. The scaling form implies a fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for Glauber-Ising model at dimension d=1d = 1 to 4 and extend the study to the diffusion problem. Our finite size scaling ansatz is satisfied in all these cases providing a good estimate of the exponent θ\theta.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.

    Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

    Full text link
    We examine the spin-SS quantum Heisenberg magnet with Gaussian-random, infinite-range exchange interactions. The quantum-disordered phase is accessed by generalizing to SU(M)SU(M) symmetry and studying the large MM limit. For large SS the ground state is a spin-glass, while quantum fluctuations produce a spin-fluid state for small SS. The spin-fluid phase is found to be generically gapless - the average, zero temperature, local dynamic spin-susceptibility obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn} (\omega) at low frequencies. This form is identical to the phenomenological `marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from [email protected]

    Phase ordering in chaotic map lattices with conserved dynamics

    Full text link
    Dynamical scaling in a two-dimensional lattice model of chaotic maps, in contact with a thermal bath, is numerically studied. The model here proposed is equivalent to a conserved Ising model with coupligs which fluctuate over the same time scale as spin moves. When couplings fluctuations and thermal fluctuations are both important, this model does not belong to the class of universality of a Langevin equation known as model B; the scaling exponents are continuously varying with the temperature and depend on the map used. The universal behavior of model B is recovered when thermal fluctuations are dominant.Comment: 6 pages, 4 figures. Revised version accepted for publication on Physical Review E as a Rapid Communicatio
    corecore