7,443 research outputs found
Non-equilibrium Phase-Ordering with a Global Conservation Law
In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising
model leads to an asymptotic length-scale
at because the kinetic coefficient is renormalized by the broken-bond
density, . For , activated kinetics recovers the
standard asymptotic growth-law, . However, at all temperatures,
infinite-range energy-transport is allowed by the spin-exchange dynamics. A
better implementation of global conservation, the microcanonical Creutz
algorithm, is well behaved and exhibits the standard non-conserved growth law,
, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st
Persistence in systems with algebraic interaction
Persistence in coarsening 1D spin systems with a power law interaction
is considered. Numerical studies indicate that for sufficiently
large values of the interaction exponent ( in our
simulations), persistence decays as an algebraic function of the length scale
, . The Persistence exponent is found to be
independent on the force exponent and close to its value for the
extremal () model, . For smaller
values of the force exponent (), finite size effects prevent the
system from reaching the asymptotic regime. Scaling arguments suggest that in
order to avoid significant boundary effects for small , the system size
should grow as .Comment: 4 pages 4 figure
Dynamical properties of the hypercell spin glass model
The spreading of damage technique is used to study the sensibility to initial
conditions in a heath bath Monte Carlo simulation of the spin glass hypercubic
cell model. Since the hypercubic cell in dimension 2D and the hypercubic
lattice in dimension D resemble each other closely at finite dimensions and
both converge to mean field when dimension goes to infinity, it allows us to
study the effect of dimensionality on the dynamical behavior of spin glasses.Comment: 13 pages, RevTex, 8 ps figure
Getting into Equity
For two centuries, common lawyers have talked about a “cause of action.” But “cause of action” is not an organizing principle for equity. This Article shows how a plaintiff gets into equity, and it explains that equity is shaped by the interplay of its remedial, procedural, and substantive law. Equity is adjectival, that is, it modifies law rather than the other way around. Its power comes from remedies, not rights. And for getting into equity, what is central is a grievance. To insist on an equitable cause of action is to work a fundamental change in how a plaintiff gets into equity
Evidence for the droplet/scaling picture of spin glasses
We have studied the Parisi overlap distribution for the three dimensional
Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T
around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the
full Parisi replica symmetry breaking, just as was also observed in recent
Monte Carlo simulations on a cubic lattice. However, for lower temperatures our
data agree with predictions from the droplet or scaling picture. The failure to
see droplet model behaviour in Monte Carlo simulations is due to the fact that
all existing simulations have been done at temperatures too close to the
transition temperature so that sytem sizes larger than the correlation length
have not been achieved.Comment: 4 pages, 6 figure
Measuring overlaps in mesoscopic spin glasses via conductance fluctuations
We consider the electonic transport in a mesoscopic metallic spin glasses. We
show that the distribution of overlaps between spin configurations can be
inferred from the reduction of the conductance fluctuations by the magnetic
impurities. Using this property, we propose new experimental protocols to probe
spin glasses directly through their overlaps
Spatial fluctuations of a surviving particle in the trapping reaction
We consider the trapping reaction, , where and particles
have a diffusive dynamics characterized by diffusion constants and .
The interaction with particles can be formally incorporated in an effective
dynamics for one particle as was recently shown by Bray {\it et al}. [Phys.
Rev. E {\bf 67}, 060102 (2003)]. We use this method to compute, in space
dimension , the asymptotic behaviour of the spatial fluctuation,
, for a surviving particle in the perturbative regime,
, for the case of an initially uniform distribution of
particles. We show that, for , with
. By contrast, the fluctuations of paths constrained to return to
their starting point at time grow with the larger exponent 1/3. Numerical
tests are consistent with these predictions.Comment: 10 pages, 5 figure
Glassy dynamics near zero temperature
We numerically study finite-dimensional spin glasses at low and zero
temperature, finding evidences for (i) strong time/space heterogeneities, (ii)
spontaneous time scale separation and (iii) power law distributions of flipping
times. Using zero temperature dynamics we study blocking, clustering and
persistence phenomena
An Operational evaluation of head up displays for civil transport operations. NASA/FAA phase 3 report
The advantages and disadvantages of head-up displays (HUDs) in commercial jet transport approach and landing operations was evaluated. Ten airline captains currently qualified in the B-727 aircraft flew a series of instrument landing system (ILS) and nonprecision approaches in a motion base simulator using both a flight director HUD concept and a flightpath HUD concept as well as conventional head-down instruments under a variety of environmental and operational conditions to assess: (1) the potential benefits of these HUDs in airline operations; (2) problems which might be associated with their use; and (3) flight crew training requirements and flight crew operating procedures suitable for use with the HUDs. Results are presented in terms of objective simulator based performance measures, subject pilot opinion and rating data, and observer data
- …