8,036 research outputs found

    Reply to "Comment on Evidence for the droplet picture of spin glasses"

    Full text link
    Using Monte Carlo simulations (MCS) and the Migdal-Kadanoff approximation (MKA), Marinari et al. study in their comment on our paper the link overlap between two replicas of a three-dimensional Ising spin glass in the presence of a coupling between the replicas. They claim that the results of the MCS indicate replica symmetry breaking (RSB), while those of the MKA are trivial, and that moderate size lattices display the true low temperature behavior. Here we show that these claims are incorrect, and that the results of MCS and MKA both can be explained within the droplet picture.Comment: 1 page, 1 figur

    Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model

    Get PDF
    The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a single pair of pure states.Comment: 4 pages, 6 figures, 2 table

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure

    Zero Temperature Dynamics of the Weakly Disordered Ising Model

    Full text link
    The Glauber dynamics of the pure and weakly disordered random-bond 2d Ising model is studied at zero-temperature. A single characteristic length scale, L(t)L(t), is extracted from the equal time correlation function. In the pure case, the persistence probability decreases algebraically with the coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime where the behaviour is pure-like; an intermediate regime where the persistence probability decays non-algebraically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the intermediate regime, we find that P(t)L(t)θP(t)\sim L(t)^{-\theta'}, where θ=0.420±0.009\theta' = 0.420\pm 0.009. The value of θ\theta' is consistent with that found for the pure 2d Ising model at zero-temperature. Our results in the intermediate regime are consistent with a logarithmic decay of the persistence probability with time, P(t)(lnt)θdP(t)\sim (\ln t)^{-\theta_d}, where θd=0.63±0.01\theta_d = 0.63\pm 0.01.Comment: references updated, very minor amendment to abstract and the labelling of figures. To be published in Phys Rev E (Rapid Communications), 1 March 199

    Real space analysis of inherent structures

    Full text link
    We study a generalization of the one-dimensional disordered Potts model, which exhibits glassy properties at low temperature. The real space properties of inherent structures visited dynamically are analyzed through a decomposition into domains over which the energy is minimized. The size of these domains is distributed exponentially, defining a characteristic length scale which grows in equilibrium when lowering temperature, as well as in the aging regime at a given temperature. In the low temperature limit, this length can be interpreted as the distance between `excited' domains within the inherent structures.Comment: 7 pages, 8 figures, final versio

    Phase Ordering Kinetics with External Fields and Biased Initial Conditions

    Full text link
    The late-time phase-ordering kinetics of the O(n) model for a non-conserved order parameter are considered for the case where the O(n) symmetry is broken by the initial conditions or by an external field. An approximate theoretical approach, based on a `gaussian closure' scheme, is developed, and results are obtained for the time-dependence of the mean order parameter, the pair correlation function, the autocorrelation function, and the density of topological defects [e.g. domain walls (n=1n=1), or vortices (n=2n=2)]. The results are in qualitative agreement with experiments on nematic films and related numerical simulations on the two-dimensional XY model with biased initial conditions.Comment: 35 pages, latex, no figure

    Growth Laws for Phase Ordering

    Full text link
    We determine the characteristic length scale, L(t)L(t), in phase ordering kinetics for both scalar and vector fields, with either short- or long-range interactions, and with or without conservation laws. We obtain L(t)L(t) consistently by comparing the global rate of energy change to the energy dissipation from the local evolution of the order parameter. We derive growth laws for O(n) models, and our results can be applied to other systems with similar defect structures.Comment: 12 pages, LaTeX, second tr

    Approach to Asymptotic Behaviour in the Dynamics of the Trapping Reaction

    Full text link
    We consider the trapping reaction A + B -> B in space dimension d=1, where the A and B particles have diffusion constants D_A, D_B respectively. We calculate the probability, Q(t), that a given A particle has not yet reacted at time t. Exploiting a recent formulation in which the B particles are eliminated from the problem we find, for t -> \infty, Q(t)exp[(4/π)(ρ2DBt)1/2(Cρ2DAt)1/3+...]Q(t) \sim \exp[-(4/\sqrt{\pi})(\rho^2 D_Bt)^{1/2} - (C \rho^2 D_A t)^{1/3} + ...], where ρ\rho is the density of B particles and CDA/DBC \propto D_A/D_B for DA/DB<<1D_A/D_B << 1.Comment: 8 pages, 2 figures; minor change
    corecore