280 research outputs found

    Trojan Microparticles Potential for Ophthalmic Drug Delivery

    Get PDF
    The administration of drugs to treat ocular disorders still remains a technological challenge in this XXI century. Although there is an important arsenal of active molecules useful to treat ocular diseases, ranging from classical compounds to biotechnological products, currenty, no ideal delivery system is able to profit all their therapeutic potential. Among the intraocular drug delivery systems (IODDS) proposed to overcome some of the most important limitations, microsystems and nanosystems have raised high attention. While microsystems are able to offer long-term release after intravitreal injection, nanosystems can protect the active compound from external environment (reducing their clearance) and direct it to its target tissues. In recent years, some researchers have explored the possibility of combining micro and nanosystems in “nanoparticle-in-microparticle (NiMs)” systems or “trojan systems”. This excellent idea is not exempt of technological problems, remains partially unsolved, especially in the case of IODDS. The objective of the present review is to show the state of art concerning the design, preparation and characterization of trojan microparticles for drug delivery and to remark their potential and limitations as IODDS, one of the most important challenges faced by pharmaceutical technology at the moment

    Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration

    Get PDF
    Successful therapy for chronic diseases affecting the posterior segment of the eye requires sustained drug concentrations at the site of action for extended periods of time. To achieve this, it is necessary to use high systemic doses or frequent intraocular injections, both associated with serious adverse effects. In order to avoid these complications and improve patient`s quality of life, an experimental study has been conducted on the preparation of a new generation of biodegradable poly D-L(lactide-co-glycolide (50:50) (PLGA) polymer microspheres (MSs) loaded with Dxm, vitamin E and/or human serum albumin (HSA). Particles were prepared according to a S/O/W encapsulation method and the 20-40ÎĽm fraction was selected. This narrow size distribution is suitable for minimally invasive intravitreal injection by small calibre needles. Characterisation of the MSs showed high Dxm loading and encapsulation efficiency (> 90%) without a strong interaction with the polymer matrix, as revealed by DSC analysis. MSs drug release studies indicated a small burst effect (lower than 5%) during the first five hours and subsequently, drug release was sustained for at least 30 days, led by diffusion and erosion mechanisms. Dxm release rate was modulated when solid state HSA was incorporated into MSs formulation. SDS-PAGE analysis showed that the protein maintained its integrity during the encapsulation process, as well as for the release study. MSs presented good tolerance and lack of cytotoxicity in macrophages and HeLa cultured cells. After 12 months of storage under standard refrigerated conditions (41ÂşC), MSs retained appropriate physical and chemical properties and analogous drug release kinetics. Therefore, we conclude that these microspheres are promising pharmaceutical systems for intraocular administration, allowing controlled release of the drug

    The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies

    Get PDF
    Pathologies affecting the posterior segment are one of the major causes of blindness in developed countries and are becoming more prevalent due to the increase in society longevity. Sucessful therapy of diseases affecting the back of the eye requires effective concentrations of the active substance mantained during a long period of time in the intraocular target site. Treatment of vitreoretinal diseases often include repeated intravitreous injections that are associated with adverse effects. Local administration of biodegradable microspheres offers an excellent alternative to multiple administrations, as they are able to deliver the therapeutic molecule in a controlled fashion. Furthermore, injection of microparticles is performed without the need for surgical procedures. As most of the retinal diseases are multifactorial, microspheres result especially promising because they can be loaded with more than one active substance and complemented with the inclusion of additives with pharmacological properties. Personalized therapy can be easily achieved by changing the amount of administered microspheres. Contrary to non-biodegradable devices, biodegradable PLA and PLGA microspheres disappear from the site of administration after delivering the drug. Furthermore, microspheres prepared from these mentioned biomaterials are well tolerated after periocular and intravitreal injections in animals and humans. After injection, PLA and PLGA microspheres suffer aggregation behaving like an implant. Biodegradable microspheres are potential tools in regenerative medicine for retinal repair. According to the reported results, presumably a variety of microparticulate formulations for different ophthalmic therapeutic uses will be available in the clinical practice in the near future

    Simultaneous co-delivery of neuroprotective drugs from multiloaded PLGA microspheres for the treatment of glaucoma

    Get PDF
    Glaucoma is a multifactorial neurodegenerative disorder and one of the leading causes of irreversible blindness globally and for which intraocular pressure is the only modifiable risk factor. Although neuroprotective therapies have been suggested to have therapeutic potential, drug delivery for the treatment of ocular disorders such as glaucoma remains an unmet clinical need, further complicated by poor patient compliance with topically applied treatments. In the present study we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating three recognised neuroprotective agents (dexamethasone (DX), melatonin (MEL) and coenzyme Q10 (CoQ10)) in a single formulation (DMQ-MSs) to create a novel sustained-release intraocular drug delivery system (IODDS) for the treatment of glaucoma. MSs were spherical, with a mean particle size of 29.04 ± 1.89 μm rendering them suitable for intravitreal injection using conventional 25G-32G needles. Greater than 62% incorporation efficiency was achieved for the three drug cargo and MSs were able to co-deliver the encapsulated active compounds in a sustained manner over 30-days with low burst release. In vitro studies showed DMQ-MSs to be neuroprotective in a glutamate-induced cytotoxicity model (IC50 10.00±0.94 mM versus 6.89±0.82 mM in absence of DMQ-MSs) in R28 cell line. In vivo efficacy studies were performed using a well-established rodent model of chronic ocular hypertension (OHT), comparing single intravitreal injections of microspheres of DMQ-MSs to their equivalent individual single drug loaded MSs mixture (MSsmix), empty MSs, no-treatment OHT only and naïve groups. Twenty one days after OHT induction, DMQ-MSs showed a significantly neuroprotective effect on RGCs compared to OHT only controls. No such protective effect was observed in empty MSs and single-drug MSs treated groups. This work suggests that multi-loaded PLGA MSs present a novel therapeutic approach in the management of retinal neurodegeneration conditions such as glaucoma

    Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina

    Get PDF
    Pathologies affecting the optic nerve and the retina are one of the major causes of blindness. These diseases include age-related macular degeneration (AMD), diabetic Retinopathy (DR) and glaucoma, among others. Also, there are genetic disorders that affect the retina causing visual impairment. The prevalence of neurodegenerative diseases of the posterior segment are increased as most of them are related with the elderly. Even with the access to different treatments, there are some challenges in managing patients suffering retinal diseases. One of them is the need for frequent interventions. Also, an unpredictable response to therapy has suggested that different pathways may be playing a role in the development of these diseases. The management of these pathologies requires the development of controlled drug delivery systems able to slow the progression of the disease without the need of frequent invasive interventions, typically related with endophthalmitis, retinal detachment, ocular hypertension, cataract, inflammation, and floaters, among other. Biodegradable microspheres are able to encapsulate low molecular weight substances and large molecules such as biotechnological products. Over the last years, a large variety of active substances has been encapsulated in microspheres with the intention of providing neuroprotection of the optic nerve and the retina. The purpose of the present review is to describe the use of microspheres in chronic neurodegenerative diseases affecting the retina and the optic nerve. The advantage of microencapsulation of low molecular weight drugs as well as therapeutic peptides and proteins to be used as neuroprotective strategy is discussed. Also, a new use of the microspheres in the development of animal models of neurodegeneration of the posterior segment is described

    Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents

    Get PDF
    The increment in ocular drug bioavailability after topical administration is one of the main challenges in pharmaceutical technology. For several years, different strategies based on nanotechnology, hydrogels or implants have been evaluated. Nowadays, the tolerance of ophthalmic preparations has become a critical issue and it is essential to the use of well tolerated excipients. In the present work, we have explored the potential of gelatin nanoparticles (GNPs) loaded with timolol maleate (TM), a beta-adrenergic blocker widely used in the clinic for glaucoma treatment and a hybrid system of TM-GNPs included in a hydroxypropyl methylcellulose (HPMC) viscous solution. The TM- loaded nanoparticles (mean particle size of 193 ± 20 nm and drug loading of 0.291 ± 0.019 mg TM/mg GNPs) were well tolerated both in vitro (human corneal cells) and in vivo. The in vivo efficacy studies performed in normotensive rabbits demonstrated that these gelatin nanoparticles were able to achieve the same hypotensive effect as a marketed formulation (0.5% TM) containing a 5-fold lower concentration of the drug. When comparing commercial and TM GNPs formulations with the same TM dose, nanoparticles generated an increased efficacy with a significant (p < 0.05) reduction of intraocular pressure (IOP) (from 21% to 30%) and an augmentation of 1.7-fold in the area under the curve (AUC)(0–12h). On the other hand, the combination of timolol-loaded nanoparticles (TM 0.1%) and the viscous polymer HPMC 0.3%, statistically improved the IOP reduction up to 30% (4.65 mmHg) accompanied by a faster time of maximum effect (tmax = 1 h). Furthermore, the hypotensive effect was extended for four additional hours, reaching a pharmacological activity that lasted 12 h after a single instillation of this combination, and leading to an AUC(0 12h) 2.5-fold higher than the one observed for the marketed formulation. According to the data presented in this work, the use of hybrid systems that combine well tolerated gelatin nanoparticles and a viscous agent could be a promising alternative in the management of high intraocular pressure in glaucoma

    Nano and microtechnologies for ophthalmic administration. An overview

    Get PDF
    Ocular drug delivery is one of the most challenging fields of pharmaceutical research. They are generally employed to overcome the static (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers) and dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution) of the eye. Ophthalmic formulations must be sterile, and the biomaterials used in the preparation of pharmaceutical systems completely compatible and extremely well tolerated by ocular tissues. The location of the target tissue in the eye will determine the route of administration. Ophthalmic administration systems are intended for topical, intraocular and periocular administration. In this review we describe the main pharmaceutical nano- and microsystems currently under study to administrate drugs in the eye, covering microparticles, nanoparticles, liposomes, microemulsions, niosomes and dendrimers. We have performed the corresponding revision of the published scientific literature always emphasizing the technological aspects. The review discusses also the biomaterials used in the preparation of the nano and microsystems of ophthalmic drug delivery, fabrication techniques, therapeutic significances, and future possibilities in the field

    Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases

    Get PDF
    The present study aims to develop a thermo-responsive-injectable hydrogel (HyG) based on PLGA-PEG-PLGA (PLGA = poly-(DL-lactic acid co-glycolic acid); PEG = polyethylene glycol) to deliver neuroprotective agents to the retina over time. Two PLGA-PEG PLGA copolymers with different PEG:LA:GA ratios (1:1.54:23.1 and 1:2.25:22.5) for HyG-1 and HyG-2 development respectively were synthetized and characterized by different techniques (gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), critical micelle concentration (CMC), gelation and rheological behaviour). According to the physicochemical characterization, HyG-1 was selected for further studies and loaded with anti-inflammatory drugs: dexamethasone (0.2%), and ketorolac (0.5%), alone or in combination with the antioxidants idebenone (1 µM) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) (0.002%). In vitro drug release and cytotoxicity studies were performed for the active substances and hydrogels (loaded and drug-free). A cellular model based on oxidative stress was optimized for anti-inflammatory and antioxidant screening of the formulations by using retinal-pigmented epithelial cell line hTERT (RPE-1). The copolymer 1, used to prepare thermo-responsive HyG-1, showed low polydispersity (PDI = 1.22) and a strong gel behaviour at 25% (w/v) in an isotonic buffer solution close to the vitreous temperature (31–34 °C). Sustained release of dexamethasone and ketorolac was achieved between 47 and 62 days, depending on the composition. HyG-1 was well tolerated (84.5 ± 3.2%) in retinal cells, with values near 100% when the anti-inflammatory and antioxidant agents were included. The combination of idebenone and dexamethasone promoted high oxidative protection in the cells exposed to H2O2, with viability values of 86.2 ± 14.7%. Ketorolac and dexamethasone-based formulations ameliorated the production of TNF-α, showing significant results (p ≤ 0.0001). The hydrogels developed in the present study entail a novel biodegradable tool to treat neurodegenerative processes of the retina overtim

    Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits

    Get PDF
    Local long-term delivery of glial cell line derived neurotrophic factor (GDNF) from vitamin E/poly-lactic-co-glycolic acid microspheres (MSs) protects retinal ganglion cells in an animal model of glaucoma for up to 11 weeks. However, the pharmacokinetics of GDNF after intravitreal injection of MSs is not known. We evaluated the GDNF levels after a single intravitreal injection of GDNF/VitE MSs. Biodegradable MSs were prepared by the solid-oil-in-water emulsion-solvent evaporation technique and characterized. Rabbits received a single intravitreal injection (50 μL) of GDNF/VitE MSs (4%w/v; 24 right eyes; 74.85 ng GDNF), blank MSs (4%w/v; 24 left eyes), and balanced salt solution (4 eyes). Two controls eyes received no injections. At 24 hours, 1, 4, 6, 8, 12, 18, and 24 weeks after injection, the eyes were enucleated, and the intravitreal GDNF levels were quantified. Pharmacokinetic data were analysed according to non-compartmental model. Intraocular GDNF levels of 717.1 ± 145.1 pg/mL were observed at 24 hours for GDNF-loaded MSs, followed by a plateau (745.3 ± 25.5 pg/mL) until day 28. After that, a second plateau (17.4 ± 3.7 pg/mL) occurred from 8 to 24 weeks postinjection, significantly higher than the basal levels. Eyes injected with GDNF/vitE and Blank-MSs did not show any abnormalities during the six-months follow up after administration. The single injection of GDNF/VitE MSs provided a sustained controlled release of the neurotrophic factor in a controlled fashion for up to six months

    Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits

    Get PDF
    Local long-term delivery of glial cell line derived neurotrophic factor (GDNF) from vitamin E/poly-lactic-co-glycolic acid microspheres (MSs) protects retinal ganglion cells in an animal model of glaucoma for up to 11 weeks. However, the pharmacokinetics of GDNF after intravitreal injection of MSs is not known. We evaluated the GDNF levels after a single intravitreal injection of GDNF/VitE MSs. Biodegradable MSs were prepared by the solid-oil-in-water emulsion-solvent evaporation technique and characterized. Rabbits received a single intravitreal injection (50 μL) of GDNF/VitE MSs (4%w/v; 24 right eyes; 74.85 ng GDNF), blank MSs (4%w/v; 24 left eyes), and balanced salt solution (4 eyes). Two controls eyes received no injections. At 24 hours, 1, 4, 6, 8, 12, 18, and 24 weeks after injection, the eyes were enucleated, and the intravitreal GDNF levels were quantified. Pharmacokinetic data were analysed according to non-compartmental model. Intraocular GDNF levels of 717.1 ± 145.1 pg/mL were observed at 24 hours for GDNF-loaded MSs, followed by a plateau (745.3 ± 25.5 pg/mL) until day 28. After that, a second plateau (17.4 ± 3.7 pg/mL) occurred from 8 to 24 weeks postinjection, significantly higher than the basal levels. Eyes injected with GDNF/vitE and Blank-MSs did not show any abnormalities during the six-months follow up after administration. The single injection of GDNF/VitE MSs provided a sustained controlled release of the neurotrophic factor in a controlled fashion for up to six months
    • …
    corecore