11,768 research outputs found

    New results on alpha_s and optimized scales

    Full text link
    A summary of the latest alpha_s results at LEP1 and LEP2 from event-shape predictions at Order(alpha2_s) + NLLA is presented. Later these are compared to measurements obtained using the Experimentally Optimized Scale method. Finally the alpha_s measurement from the 4-jet rate is discussed.Comment: 6 pages, 4 figures, talk presented at the 30th ISMD, Hungary, October 200

    Thermal X-ray emission from shocked ejecta in Type Ia Supernova Remnants. Prospects for explosion mechanism identification

    Full text link
    The explosion mechanism behind Type Ia supernovae is a matter of continuing debate. The diverse attempts to identify or at least constrain the physical processes involved in the explosion have been only partially successful so far. In this paper we propose to use the thermal X-ray emission from young supernova remnants originated in Type Ia events to extract relevant information concerning the explosions themselves. We have produced a grid of thermonuclear supernova models representative of the paradigms currently under debate: pure deflagrations, delayed detonations, pulsating delayed detonations and sub-Chandrasekhar explosions, using their density and chemical composition profiles to simulate the interaction with the surrounding ambient medium and the ensuing plasma heating, non-equilibrium ionization and thermal X-ray emission of the ejecta. Key observational parameters such as electron temperatures, emission measures and ionization time scales are presented and discussed. We find that not only is it possible to identify the explosion mechanism from the spectra of young Type Ia Supernova Remnants, it is in fact necessary to take the detailed ejecta structure into account if such spectra are to be modeled in a self-consistent way. Neither element line flux ratios nor element emission measures are good estimates of the true ratios of ejected masses, with differences of as much as two or three orders of magnitude for a given model. Comparison with observations of the Tycho SNR suggests a delayed detonation as the most probable explosion mechanism. Line strengths, line ratios, and the centroid of the Fe Kalpha line are reasonably well reproduced by a model of this kind.Comment: 11 pages, 8 figures (5 of them color), accepted for publication by the Ap

    Isotopic overabundances and the energetic particle model of solar flares

    Get PDF
    According to the energetic particle model of solar flares particles are efficiently accelerated in the magnetic field loop of an active region (AR) by hydromagnetic turbulence. It is demonstrated that the isotopic overabundances observed in some flares are not a consequence of the flare itself but are characteristic of the plasma in the AR. Only when a flare releases the plasma into the interplanetary space it is possible to observe this anomalous composition at spacecraft locations

    Multi-vortex dynamics in junctions of charge density waves

    Full text link
    Ground state reconstruction by creation of topological defects in junctions of CDWs is a convenient playground for modern efforts of field-effect transformations in strongly correlated materials with spontaneous symmetry breakings. Being transient, this effect contributes also to another new science of pump-induced phase transitions. We present a dynamical model for behavior of the CDW in restricted geometries of junctions under an applied voltage or a passing current. The model takes into account multiple interacting fields: the amplitude and the phase of the CDW complex order parameter, distributions of the electric field, the density and the current of various normal carriers. A particular challenge was to monitor the local conservation of the condensed and the normal charge densities. That was done easily invoking the chiral invariance and the associated anomaly, but prize is an unconventional Ginsburg-Landau type theory which is not analytic with respect to the order parameter. The numerical modeling poses unusual difficulties but still can demonstrate that vortices are nucleated at the junction boundary when the voltage across, or the current through, exceed a threshold.Comment: To be published in proceedings of the conference SUPERSTRIPES-2014, A. Bianconi ed., J. Supercond. Nov. Mag., (2015

    Removing batch effects for prediction problems with frozen surrogate variable analysis

    Full text link
    Batch effects are responsible for the failure of promising genomic prognos- tic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to re- move these artifacts, but they are designed to be used in population studies. But genomic technologies are beginning to be used in clinical applications where sam- ples are analyzed one at a time for diagnostic, prognostic, and predictive applica- tions. There are currently no batch correction methods that have been developed specifically for prediction. In this paper, we propose an new method called frozen surrogate variable analysis (fSVA) that borrows strength from a training set for individual sample batch correction. We show that fSVA improves prediction ac- curacy in simulations and in public genomic studies. fSVA is available as part of the sva Bioconductor package

    Quantum Mechanical Corrections to the Schwarzschild Black Hole Metric

    Full text link
    Motivated by quantum mechanical corrections to the Newtonian potential, which can be translated into an ℏ\hbar-correction to the g00g_{00} component of the Schwarzschild metric, we construct a quantum mechanically corrected metric assuming −g00=grr-g_{00}=g^{rr}. We show how the Bekenstein black hole entropy SS receives its logarithmic contribution provided the quantum mechanical corrections to the metric are negative. In this case the standard horizon at the Schwarzschild radius rSr_S increases by small terms proportional to ℏ\hbar and a remnant of the order of Planck mass emerges. We contrast these results with a positive correction to the metric which, apart from a corrected Schwarzschild horizon, leads to a new purely quantum mechanical horizon.Comment: 14 pages Latex, enlarged version as compared to the published on

    Semidefinite Programming Approach for the Quadratic Assignment Problem with a Sparse Graph

    Full text link
    The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension n2n^2 where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension O(n)\mathcal{O}(n) no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Augmented Direction Method of Multipliers (ADMM) in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension O(n)\mathcal{O}(n). The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy (NMR) to tackle the assignment problem.Comment: 31 page
    • 

    corecore