49 research outputs found

    Cognitive Control in Adolescence: Neural Underpinnings and Relation to Self-Report Behaviors

    Get PDF
    Adolescence is commonly characterized by impulsivity, poor decision-making, and lack of foresight. However, the developmental neural underpinnings of these characteristics are not well established.To test the hypothesis that these adolescent behaviors are linked to under-developed proactive control mechanisms, the present study employed a hybrid block/event-related functional Magnetic Resonance Imaging (fMRI) Stroop paradigm combined with self-report questionnaires in a large sample of adolescents and adults, ranging in age from 14 to 25. Compared to adults, adolescents under-activated a set of brain regions implicated in proactive top-down control across task blocks comprised of difficult and easy trials. Moreover, the magnitude of lateral prefrontal activity in adolescents predicted self-report measures of impulse control, foresight, and resistance to peer pressure. Consistent with reactive compensatory mechanisms to reduced proactive control, older adolescents exhibited elevated transient activity in regions implicated in response-related interference resolution.Collectively, these results suggest that maturation of cognitive control may be partly mediated by earlier development of neural systems supporting reactive control and delayed development of systems supporting proactive control. Importantly, the development of these mechanisms is associated with cognitive control in real-life behaviors

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Self-reported safety belt use among emergency department patients in Boston, Massachusetts

    Get PDF
    BACKGROUND: Safety belt use is 80% nationally, yet only 63% in Massachusetts. Safety belt use among potentially at-risk groups in Boston is unknown. We sought to assess the prevalence and correlates of belt non-use among emergency department (ED) patients in Boston. METHODS: A cross-sectional survey with systematic sampling was conducted on non-urgent ED patients age ≥18. A closed-ended survey was administered by interview. Safety belt use was defined via two methods: a single-item and a multiple-item measure of safety belt use. Each was scored using a 5-point frequency scale. Responses were used to categorize safety belt use as 'always' or less than 'always'. Outcome for multivariate logistic regression analysis was safety belt use less than 'always'. RESULTS: Of 478 patients approached, 381 (80%) participated. Participants were 48% female, 48% African-American, 40% White, median age 39. Among participants, 250 (66%) had been in a car crash; 234 (61%) had a valid driver's license, and 42 (11%) had been ticketed for belt non-use. Using two different survey measures, a single-item and a multiple-item measure, safety belt use 'always' was 51% and 36% respectively. According to separate regression models, factors associated with belt non-use included male gender, alcohol consumption >5 drinks in one episode, riding with others that drink and drive, ever receiving a citation for belt non-use, believing that safety belt use is 'uncomfortable', and that 'I just forget', while 'It's my usual habit' was protective. CONCLUSION: ED patients at an urban hospital in Boston have considerably lower self-reported safety belt use than state or national estimates. An ED-based intervention to increase safety belt use among this hard-to-reach population warrants consideration

    Effects of residence and race on burden of travel for care: cross sectional analysis of the 2001 US National Household Travel Survey

    Get PDF
    BACKGROUND: Travel burden is a key element in conceptualizing geographic access to health care. Prior research has shown that both rural and minority populations bear disproportionate travel burdens. However, many studies are limited to specific types of patient or specific locales. The purpose of our study was to quantify geographic and race-based differences in distance traveled and time spent in travel for medical/dental care using representative national data. METHODS: Data were drawn from 2001 National Household Travel Survey (NHTS), a nationally representative, cross-sectional household survey conducted by the US Department of Transportation. Participants recorded all travel on a designated day; the overall response rate was 41%. Analyses were restricted to households reporting at least one trip for medical and/or dental care; 3,914 trips made by 2,432 households. Dependent variables in the analysis were road miles traveled, minutes spent traveling, and high travel burden, defined as more than 30 miles or 30 minutes per trip. Independent variables of interest were rural residence and race. Characteristics of the individual, the trip, and the community were controlled in multivariate analyses. RESULTS: The average trip for care in the US in 2001 entailed 10.2 road miles (16.4 kilometers) and 22.0 minutes of travel. Rural residents traveled further than urban residents in unadjusted analysis (17.5 versus 8.3 miles; 28.2 versus 13.4 km). Rural trips took 31.4% longer than urban trips (27.2 versus 20.7 minutes). Distance traveled did not vary by race. African Americans spent more time in travel than whites (29.1 versus 20.6 minutes); other minorities did not differ. In adjusted analyses, rural residence (odds ratio, OR, 2.67, 95% confidence interval, CI 1.39 5.1.5) was associated with a trip of 30 road miles or more; rural residence (OR, 1.80, CI 1.09 2.99) and African American race/ethnicity (OR 3.04. 95% CI 2.0 4.62) were associated with a trip lasting 30 minutes or longer. CONCLUSION: Rural residents and African Americans experience higher travel burdens than urban residents or whites when seeking medical/dental care

    Impaired Prefrontal Hemodynamic Maturation in Autism and Unaffected Siblings

    Get PDF
    BACKGROUND: Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD). Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb]) in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs. CONCLUSION/SIGNIFICANCE: Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena

    On the Role of the Striatum in Response Inhibition

    Get PDF
    BACKGROUND: Stopping a manual response requires suppression of the primary motor cortex (M1) and has been linked to activation of the striatum. Here, we test three hypotheses regarding the role of the striatum in stopping: striatum activation during successful stopping may reflect suppression of M1, anticipation of a stop-signal occurring, or a slower response build-up. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-four healthy volunteers underwent functional magnetic resonance imaging (fMRI) while performing a stop-signal paradigm, in which anticipation of stopping was manipulated using a visual cue indicating stop-signal probability, with their right hand. We observed activation of the striatum and deactivation of left M1 during successful versus unsuccessful stopping. In addition, striatum activation was proportional to the degree of left M1 deactivation during successful stopping, implicating the striatum in response suppression. Furthermore, striatum activation increased as a function of stop-signal probability and was to linked to activation in the supplementary motor complex (SMC) and right inferior frontal cortex (rIFC) during successful stopping, suggesting a role in anticipation of stopping. Finally, trial-to-trial variations in response time did not affect striatum activation. CONCLUSIONS/SIGNIFICANCE: The results identify the striatum as a critical node in the neural network associated with stopping motor responses. As striatum activation was related to both suppression of M1 and anticipation of a stop-signal occurring, these findings suggest that the striatum is involved in proactive inhibitory control over M1, most likely in interaction with SMC and rIFC
    corecore