154 research outputs found

    White Mountian: White Light

    Get PDF

    Protecting Quantum Information with Entanglement and Noisy Optical Modes

    Get PDF
    We incorporate active and passive quantum error-correcting techniques to protect a set of optical information modes of a continuous-variable quantum information system. Our method uses ancilla modes, entangled modes, and gauge modes (modes in a mixed state) to help correct errors on a set of information modes. A linear-optical encoding circuit consisting of offline squeezers, passive optical devices, feedforward control, conditional modulation, and homodyne measurements performs the encoding. The result is that we extend the entanglement-assisted operator stabilizer formalism for discrete variables to continuous-variable quantum information processing.Comment: 7 pages, 1 figur

    Magnetic resonance imaging of knee hyaline cartilage and intraarticular pathology

    Full text link
    Injuries to the hyaline cartilage of the knee joint are difficult to diagnose without invasive techniques. Even though these defects may be the most important prog nostic factors in assessing knee joint injury, they are usually not diagnosed until arthrotomy or arthroscopy. Once injuries to hyaline cartilage are found and/or treated, no technique exists to follow these over time. Plain radiographs, arthrograms, and even computed tomography fail to detail most hyaline cartilage defects. We used magnetic resonance imaging (MRI) to eval uate five fresh frozen cadaver limbs and 10 patients whose pathology was known from arthrotomy or ar throscopic examination. Using a 0.35 Tesla supercon ducting magnet and spin-echo imaging technique with a head coil, we found that intraarticular fluid or air helped to delineate hyaline cartilage pathology. The multiplane capability of MRI proved to be excellent in detailing small (3 mm or more) defects on the femoral condyles and patellar surface. Cruciate ligaments were best visualized on sagittal oblique projections while meniscal pathology was best seen on true sagittal and coronal projections. MRI shows great promise in providing a noninvasive technique of evaluating hyaline cartilage defects, their response to treatment, and detailed anatomical infor mation about cruciate ligaments and menisci.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67078/2/10.1177_036354658701500505.pd

    Implementation of quantum maps by programmable quantum processors

    Full text link
    A quantum processor is a device with a data register and a program register. The input to the program register determines the operation, which is a completely positive linear map, that will be performed on the state in the data register. We develop a mathematical description for these devices, and apply it to several different examples of processors. The problem of finding a processor that will be able to implement a given set of mappings is also examined, and it is shown that while it is possible to design a finite processor to realize the phase-damping channel, it is not possible to do so for the amplitude-damping channel.Comment: 10 revtex pages, no figure

    Gaussian quantum computation with oracle-decision problems

    Full text link
    We study a simple-harmonic-oscillator quantum computer solving oracle decision problems. We show that such computers can perform better by using nonorthogonal Gaussian wave functions rather than orthogonal top-hat wave functions as input to the information encoding process. Using the Deutsch-Jozsa problem as an example, we demonstrate that Gaussian modulation with optimized width parameter results in a lower error rate than for the top-hat encoding. We conclude that Gaussian modulation can allow for an improved trade-off between encoding, processing and measurement of the information.Comment: RevTeX4, 10 pages with 4 figure

    Probabilistic implementation of universal quantum processors

    Full text link
    We present a probabilistic quantum processor for qudits. The processor itself is represented by a fixed array of gates. The input of the processor consists of two registers. In the program register the set of instructions (program) is encoded. This program is applied to the data register. The processor can perform any operation on a single qudit of the dimension N with a certain probability. If the operation is unitary, the probability is in general 1/N^2, but for more restricted sets of operators the probability can be higher. In fact, this probability can be independent of the dimension of the qudit Hilbert space of the qudit under some conditions.Comment: 7 revtex pages, 1 eps figur
    corecore