2,920 research outputs found

    The influence of persuasion in opinion formation and polarization

    Get PDF
    We present a model that explores the influence of persuasion in a population of agents with positive and negative opinion orientations. The opinion of each agent is represented by an integer number kk that expresses its level of agreement on a given issue, from totally against k=Mk=-M to totally in favor k=Mk=M. Same-orientation agents persuade each other with probability pp, becoming more extreme, while opposite-orientation agents become more moderate as they reach a compromise with probability qq. The population initially evolves to (a) a polarized state for r=p/q>1r=p/q>1, where opinions' distribution is peaked at the extreme values k=±Mk=\pm M, or (b) a centralized state for r<1r<1, with most opinions around k=±1k=\pm 1. When r1r \gg 1, polarization lasts for a time that diverges as rMlnNr^M \ln N, where NN is the population's size. Finally, an extremist consensus (k=Mk=M or M-M) is reached in a time that scales as r1r^{-1} for r1r \ll 1

    Social distancing strategies against disease spreading

    Get PDF
    The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.ei.e, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.ei.e, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.Comment: to be published in "Perspectives and Challenges in Statistical Physics and Complex Systems for the Next Decade", Word Scientific Pres

    Photoemissive Determination of Barrier Shape in Tunnel Junctions

    Get PDF
    Tunnel junctions have been characterized in terms of three parameters, the barrier heights φ_1, and φ_2, and the width S, which generally are determined by a fit of experimental current-voltage characteristic curves with theory. In metal-semiconductor systems barrier heights have been determined independently of other parameters from measurement of the spectral dependence of photoresponse. We wish to report the first results of the application of this technique to the measurement of the barrier heights in Al-Al_2O_3-A1 and Al-A1_20_3—Au tunnel junctions where the Al_2O_3 thickness is in the range of 20 to 40 Å 

    Optical implementation of continuous-variable quantum cloning machines

    Get PDF
    We propose an optical implementation of the Gaussian continuous-variable quantum cloning machines. We construct a symmetric N -> M cloner which optimally clones coherent states and we also provide an explicit design of an asymmetric 1 -> 2 cloning machine. All proposed cloning devices can be built from just a single non-degenerate optical parametric amplifier and several beam splitters.Comment: 4 pages, 3 figures, REVTe

    Strong quantitative benchmarking of quantum optical devices

    Full text link
    Quantum communication devices, such as quantum repeaters, quantum memories, or quantum channels, are unavoidably exposed to imperfections. However, the presence of imperfections can be tolerated, as long as we can verify such devices retain their quantum advantages. Benchmarks based on witnessing entanglement have proven useful for verifying the true quantum nature of these devices. The next challenge is to characterize how strongly a device is within the quantum domain. We present a method, based on entanglement measures and rigorous state truncation, which allows us to characterize the degree of quantumness of optical devices. This method serves as a quantitative extension to a large class of previously-known quantum benchmarks, requiring no additional information beyond what is already used for the non-quantitative benchmarks.Comment: 11 pages, 7 figures. Comments are welcome. ver 2: Improved figures, no changes to main tex

    Directed percolation depinning models: Evolution equations

    Full text link
    We present the microscopic equation for the growing interface with quenched noise for the model first presented by Buldyrev et al. [Phys. Rev. A 45, R8313 (1992)]. The evolution equation for the height, the mean height, and the roughness are reached in a simple way. The microscopic equation allows us to express these equations in two contributions: the contact and the local one. We compare this two contributions with the ones obtained for the Tang and Leschhorn model [Phys. Rev A 45, R8309 (1992)] by Braunstein et al. [Physica A 266, 308 (1999)]. Even when the microscopic mechanisms are quiet different in both model, the two contribution are qualitatively similar. An interesting result is that the diffusion contribution, in the Tang and Leschhorn model, and the contact one, in the Buldyrev model, leads to an increase of the roughness near the criticality.Comment: 10 pages and 4 figures. To be published in Phys. Rev.
    corecore