793 research outputs found

    A new analysis of the GJ581 extrasolar planetary system

    Full text link
    We have done a new analysis of the available observations for the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the ocurrence of aliases and the additional bodies - the planets f and g - announced in Vogt et al. 2010. Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the Habitable Zone (HZ) of the star GJ581. This region,for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period 450\approx 450 days, but we are judicious about any affirmation concernig this body because its signal is in the threshold of detection and the high period is in a spectral region where the ocorruence of aliases is very common. Besides, we outline some dynamical features of the habitable zone with the dynamical map and point out the role played by some resonances laying there.Comment: 12 pages, 9 figure

    Covariance of Antiproton Yield and Source Size in Nuclear Collisions

    Full text link
    We confront for the first time the widely-held belief that combined event-by-event information from quark gluon plasma signals can reduce the ambiguity of the individual signals. We illustrate specifically how the measured antiproton yield combined with the information from pion-pion HBT correlations can be used to identify novel event classes.Comment: 8 pages, 5 figures, improved title, references and readability; results unchange

    Spectral Correlations from the Metal to the Mobility Edge

    Full text link
    We have studied numerically the spectral correlations in a metallic phase and at the metal-insulator transition. We have calculated directly the two-point correlation function of the density of states R(s,s)R(s,s'). In the metallic phase, it is well described by the Random Matrix Theory (RMT). For the first time, we also find numerically the diffusive corrections for the number variance predicted by Al'tshuler and Shklovski\u{\i}. At the transition, at small energy scales, R(ss)R(s-s') starts linearly, with a slope larger than in a metal. At large separations ss1|s - s'| \gg 1, it is found to decrease as a power law R(s,s)c/ss2γR(s,s') \sim - c / |s -s'|^{2-\gamma} with c0.041c \sim 0.041 and γ0.83\gamma \sim 0.83, in good agreement with recent microscopic predictions. At the transition, we have also calculated the form factor K~(t)\tilde K(t), Fourier transform of R(ss)R(s-s'). At large ss, the number variance contains two terms =Bγ+2πK~(0)where= B ^\gamma + 2 \pi \tilde K(0) where \tilde{K}(0)isthelimitoftheformfactorfor is the limit of the form factor for t \to 0$.Comment: 7 RevTex-pages, 10 figures. Submitted to PR

    Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model

    Full text link
    We discuss the localization behavior of localized electronic wave functions in the one- and two-dimensional tight-binding Anderson model with diagonal disorder. We find that the distributions of the local wave function amplitudes at fixed distances from the localization center are well approximated by log-normal fits which become exact at large distances. These fits are consistent with the standard single parameter scaling theory for the Anderson model in 1d, but they suggest that a second parameter is required to describe the scaling behavior of the amplitude fluctuations in 2d. From the log-normal distributions we calculate analytically the decay of the mean wave functions. For short distances from the localization center we find stretched exponential localization ("sublocalization") in both, 1d and 2d. In 1d, for large distances, the mean wave functions depend on the number of configurations N used in the averaging procedure and decay faster that exponentially ("superlocalization") converging to simple exponential behavior only in the asymptotic limit. In 2d, in contrast, the localization length increases logarithmically with the distance from the localization center and sublocalization occurs also in the second regime. The N-dependence of the mean wave functions is weak. The analytical result agrees remarkably well with the numerical calculations.Comment: 12 pages with 9 figures and 1 tabl

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ

    On the infrared scaling solution of SU(N) Yang-Mills theories in the maximally Abelian gauge

    Full text link
    An improved method for extracting infrared exponents from functional equations is presented. The generalizations introduced allow for an analysis of quite complicated systems such as Yang-Mills theory in the maximally Abelian gauge. Assuming the absence of cancellations in the appropriately renormalized integrals the only consistent scaling solution yields an infrared enhanced diagonal gluon propagator in support of the Abelian dominance hypothesis. This is explicitly shown for SU(2) and subsequently verified for SU(N), where additional interactions exist. We also derive the most infrared divergent scaling solution possible for vertex functions in terms of the propagators' infrared exponents. We provide general conditions for the existence of a scaling solution for a given system and comment on the cases of linear covariant gauges and ghost anti-ghost symmetric gauges.Comment: 23 pages, 10 figures; version coincides with version published in EPJ

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure
    corecore