18,782 research outputs found

    Parallel updating cellular automaton models of driven diffusive Frenkel-Kontorova-type systems

    Full text link
    Three cellular automaton (CA) models of increasing complexity are introduced to model driven diffusive systems related to the generalized Frenkel-Kontorova (FK) models recently proposed by Braun [Phys.Rev.E58, 1311 (1998)]. The models are defined in terms of parallel updating rules. Simulation results are presented for these models. The features are qualitatively similar to those models defined previously in terms of sequentially updating rules. Essential features of the FK model such as phase transitions, jamming due to atoms in the immobile state, and hysteresis in the relationship between the fraction of atoms in the running state and the bias field are captured. Formulating in terms of parallel updating rules has the advantage that the models can be treated analytically by following the time evolution of the occupation on every site of the lattice. Results of this analytical approach are given for the two simpler models. The steady state properties are found by studying the stable fixed points of a closed set of dynamical equations obtained within the approximation of retaining spatial correlations only upto two nearest neighboring sites. Results are found to be in good agreement with numerical data.Comment: 26 pages, 4 eps figure

    String Method for the Study of Rare Events

    Full text link
    We present a new and efficient method for computing the transition pathways, free energy barriers, and transition rates in complex systems with relatively smooth energy landscapes. The method proceeds by evolving strings, i.e. smooth curves with intrinsic parametrization whose dynamics takes them to the most probable transition path between two metastable regions in the configuration space. Free energy barriers and transition rates can then be determined by standard umbrella sampling technique around the string. Applications to Lennard-Jones cluster rearrangement and thermally induced switching of a magnetic film are presented.Comment: 4 pages, 4 figure

    Method of Collective Degrees of Freedom in Spin Coherent State Path Integral

    Full text link
    We present a detailed field theoretic description of those collective degrees of freedom (CDF) which are relevant to study macroscopic quantum dynamics of a quasi-one-dimensional ferromagnetic domain wall. We apply spin coherent state path integral (SCSPI) in the proper discrete time formalism (a) to extract the relevant CDF's, namely, the center position and the chirality of the domain wall, which originate from the translation and the rotation invariances of the system in question, and (b) to derive effective action for the CDF's by elimination of environmental zero-modes with the help of the {\it Faddeev-Popov technique}. The resulting effective action turns out to be such that both the center position and the chirality can be formally described by boson coherent state path integral. However, this is only formal; there is a subtle departure from the latter.Comment: 10 pages, 1 figur

    Correlations between spectra with different symmetry: any chance to be observed?

    Full text link
    A standard assumption in quantum chaology is the absence of correlation between spectra pertaining to different symmetries. Doubts were raised about this statement for several reasons, in particular, because in semiclassics spectra of different symmetry are expressed in terms of the same set of periodic orbits. We reexamine this question and find absence of correlation in the universal regime. In the case of continuous symmetry the problem is reduced to parametric correlation, and we expect correlations to be present up to a certain time which is essentially classical but larger than the ballistic time

    Chaotic maps and flows: Exact Riemann-Siegel lookalike for spectral fluctuations

    Full text link
    To treat the spectral statistics of quantum maps and flows that are fully chaotic classically, we use the rigorous Riemann-Siegel lookalike available for the spectral determinant of unitary time evolution operators FF. Concentrating on dynamics without time reversal invariance we get the exact two-point correlator of the spectral density for finite dimension NN of the matrix representative of FF, as phenomenologically given by random matrix theory. In the limit N→∞N\to\infty the correlator of the Gaussian unitary ensemble is recovered. Previously conjectured cancellations of contributions of pseudo-orbits with periods beyond half the Heisenberg time are shown to be implied by the Riemann-Siegel lookalike
    • …
    corecore