37,667 research outputs found
A Network Model of Alcoholism and Alcohol Policy
The evolution of alcohol dependence in populations of people on different social networks is studied. Two models are studied. One is the evolution of the states of individuals on hypothesized social structures from a rewired connected caveman model. This model spans a range of social structures (networks) from very ordered to effectively random with small world structures in between. The second model is a zip-code-level model which uses data from a recent survey in Delaware. The model is a discrete model using 10 zip codes. The results show that the evolution of alcohol dependence, as governed by the simple rules that we use, depends sensitively on the network structure and a hypothetical treatment regime
Documentation of the Analyses of the Benefits and Costs of Aeronautical Research and Technology models (ABC-ART). Volume 2: Appendices
Fleet variables are defined, and source codes for each module are presented
Modeling the Void H I Column Density Spectrum
The equivalent width distribution function (EWDF) of \hone absorbers specific
to the void environment has been recently derived (Manning 2002), revealing a
large line density of clouds (dN/dz ~500 per unit z for Log (N_HI)> 12.4). I
show that the void absorbers cannot be diffuse (or so-called filamentary)
clouds, expanding with the Hubble flow, as suggested by N-body/hydro
simulations. Absorbers are here modeled as the baryonic remnants of
sub-galactic perturbations that have expanded away from their dark halos in
response to reionization at z ~ 6.5. A 1-D Lagrangian hydro/gravity code is
used to follow the dynamic evolution and ionization structure of the baryonic
clouds for a range of halo circular velocities. The simulation products at z=0
can be combined according to various models of the halo velocity distribution
function to form a column density spectrum that can be compared with the
observed. I find that such clouds may explain the observed EWDF if the halo
velocity distribution function is as steep as that advanced by Klypin (1999),
and the halo mass distribution is closer to isothermal than to NFW.Comment: 21 pages, 15 figures. Paper in press; ApJ 591, n
Experimental study of bubble cavities attached to a rotating shaft in a reservoir
Bubble cavities formed by air entrainment and attached to a rotating shaft in an oil reservoir were studied. The cavities appear to the unaided eye as toroidal. High speed photography, however, reveals the individuality of the bubble cavities and their near solid body rotational characteristics. The cavities are distorted by the rotation effects but remain attached and tend to merge because of edge effects in the axial direction. The flow field within the reservoir is influenced by the unusual character of the two phase fluid found there; the vorticity is readily visualized. Other examples of vapor entrapment at the inlet of an eccentric rotor are also discussed. A simplified analytical method is provided, and a numerical analysis is being investigated. Vapor (void) entrainment and generation can significantly alter leakage rates and stability of seals, bearings, and dampers. Recognition of these effects in the component design systems will result only after detailed studies of the above phenomena
Effect of continuous gamma-ray exposure on performance of learned tasks and effect of subsequent fractionated exposures on blood-forming tissue
Sixteen monkeys trained to perform continuous and discrete-avoidance and fixed-ratio tasks with visual and auditory cues were performance-tested before, during, and after 10-day gamma-ray exposures totaling 0, 500, 750, and 1000 rads. Approximately 14 months after the performance-test exposures, surviving animals were exposed to 100-rad gamma-ray fractions at 56-day intervals to observe injury and recovery patterns of blood-forming tissues. The fixed-ratio, food-reward task performance showed a transient decline in all dose groups within 24 hours of the start of gamma-ray exposure, followed by recovery to normal food-consumption levels within 48 to 72 hours. Avoidance tasks were performed successfully by all groups during the 10-day exposure, but reaction times of the two higher dose-rate groups in which animals received 3 and 4 rads per hour or total doses of 750 and 1000 rads, respectively, were somewhat slower
Are Compact High-Velocity Clouds Extragalactic Objects?
Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the
Local Group model and would have HI volume densities of order 0.0003/cm^3.
Clouds with these volume densities and the observed neutral hydrogen column
densities will be largely ionized, even if exposed only to the extragalactic
ionizing radiation field. Here we examine the implications of this process for
models of CHVCs. We have modeled the ionization structure of spherical clouds
(with and without dark matter halos) for a large range of densities and sizes,
appropriate to CHVCs over the range of suggested distances, exposed to the
extragalactic ionizing photon flux. Constant-density cloud models in which the
CHVCs are at Local Group distances have total (ionized plus neutral) gas masses
roughly 20-30 times larger than the neutral gas masses, implying that the gas
mass alone of the observed population of CHVCs is about 40 billion solar
masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass
in such CHVCs is a significant fraction of the dynamical mass of the Local
Group, and their line widths would exceed the observed FWHM. Models with dark
matter halos fare even more poorly; they must lie within approximately 200 kpc
of the Galaxy. We show that exponential neutral hydrogen column density
profiles are a natural consequence of an external source of ionizing photons,
and argue that these profiles cannot be used to derive model-independent
distances to the CHVCs. These results argue strongly that the CHVCs are not
cosmological objects, and are instead associated with the Galactic halo.Comment: 30 pages, 14 figures; to appear in The Astrophysical Journa
QSO Absorption Line Constraints on Intragroup High-Velocity Clouds
We show that the number statistics of moderate redshift MgII and Lyman limit
absorbers may rule out the hypothesis that high velocity clouds are infalling
intragroup material.Comment: 4 pages, no figures; submitted to Astrophysical Journal Letters;
revised version, more general and includes more about Braun and Burton CHVC
- …