7,428 research outputs found

    Scattering solutions of the spinless Salpeter equation

    Full text link
    A method to compute the scattering solutions of a spinless Salpeter equation (or a Schrodinger equation) with a central interaction is presented. This method relies on the 3-dimensional Fourier grid Hamiltonian method used to compute bound states. It requires only the evaluation of the potential at equally spaced grid points and yields the radial part of the scattering solution at the same grid points. It can be easily extended to the case of coupled channel equations and to the case of non-local interactions.Comment: 7 page

    A semiclassical model of light mesons

    Full text link
    The dominantly orbital state description is applied to the study of light mesons. The effective Hamiltonian is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of two different finite quark masses and potential parameters on Regge and vibrational trajectories is discussed.Comment: 1 figur

    How Geometry Controls the Tearing of Adhesive Thin Films on Curved Surfaces

    Full text link
    Flaps can be detached from a thin film glued on a solid substrate by tearing and peeling. For flat substrates, it has been shown that these flaps spontaneously narrow and collapse in pointy triangular shapes. Here we show that various shapes, triangular, elliptic, acuminate or spatulate, can be observed for the tears by adjusting the curvature of the substrate. From combined experiments and theoretical models, we show that the flap morphology is governed by simple geometric rules.Comment: 6 pages, 5 figure

    Comment on "Quantum mechanics of smeared particles"

    Get PDF
    In a recent article, Sastry has proposed a quantum mechanics of smeared particles. We show that the effects induced by the modification of the Heisenberg algebra, proposed to take into account the delocalization of a particle defined via its Compton wavelength, are important enough to be excluded experimentally.Comment: 2 page

    Sufficient conditions for the existence of bound states in a central potential

    Full text link
    We show how a large class of sufficient conditions for the existence of bound states, in non-positive central potentials, can be constructed. These sufficient conditions yield upper limits on the critical value, gc()g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=gv(r)V(r)=-g v(r), for which a first \ell-wave bound state appears. These upper limits are significantly more stringent than hitherto known results.Comment: 7 page

    Upper and lower bounds on the mean square radius and criteria for occurrence of quantum halo states

    Full text link
    In the context of non-relativistic quantum mechanics, we obtain several upper and lower limits on the mean square radius applicable to systems composed by two-body bound by a central potential. A lower limit on the mean square radius is used to obtain a simple criteria for the occurrence of S-wave quantum halo sates.Comment: 12 pages, 2 figure

    Critical strength of attractive central potentials

    Full text link
    We obtain several sequences of necessary and sufficient conditions for the existence of bound states applicable to attractive (purely negative) central potentials. These conditions yields several sequences of upper and lower limits on the critical value, gc()g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=gv(r)V(r)=-g v(r), for which a first \ell-wave bound state appears, which converges to the exact critical value.Comment: 18 page

    Minimal Length Uncertainty Relation and Hydrogen Atom

    Full text link
    We propose a new approach to calculate perturbatively the effects of a particular deformed Heisenberg algebra on energy spectrum. We use this method to calculate the harmonic oscillator spectrum and find that corrections are in agreement with a previous calculation. Then, we apply this approach to obtain the hydrogen atom spectrum and we find that splittings of degenerate energy levels appear. Comparison with experimental data yields an interesting upper bound for the deformation parameter of the Heisenberg algebra.Comment: 7 pages, REVTe

    Momentum Confinement Studies on ASDEX

    Get PDF

    On Dirac theory in the space with deformed Heisenberg algebra. Exact solutions

    Full text link
    The Dirac equation has been studied in which the Dirac matrices \hat{\boldmath\alpha}, \hat\beta have space factors, respectively ff and f1f_1, dependent on the particle's space coordinates. The ff function deforms Heisenberg algebra for the coordinates and momenta operators, the function f1f_1 being treated as a dependence of the particle mass on its position. The properties of these functions in the transition to the Schr\"odinger equation are discussed. The exact solution of the Dirac equation for the particle motion in the Coulomnb field with a linear dependence of the ff function on the distance rr to the force centre and the inverse dependence on rr for the f1f_1 function has been found.Comment: 13 page
    corecore