7,370 research outputs found
ILC Operating Scenarios
The ILC Technical Design Report documents the design for the construction of
a linear collider which can be operated at energies up to 500 GeV. This report
summarizes the outcome of a study of possible running scenarios, including a
realistic estimate of the real time accumulation of integrated luminosity based
on ramp-up and upgrade processes. The evolution of the physics outcomes is
emphasized, including running initially at 500 GeV, then at 350 GeV and 250
GeV. The running scenarios have been chosen to optimize the Higgs precision
measurements and top physics while searching for evidence for signals beyond
the standard model, including dark matter. In addition to the certain precision
physics on the Higgs and top that is the main focus of this study, there are
scientific motivations that indicate the possibility for discoveries of new
particles in the upcoming operations of the LHC or the early operation of the
ILC. Follow-up studies of such discoveries could alter the plan for the
centre-of-mass collision energy of the ILC and expand the scientific impact of
the ILC physics program. It is envisioned that a decision on a possible energy
upgrade would be taken near the end of the twenty year period considered in
this report
Pentaquarks with One Color Sextet Diquark
The masses of pentaquarks are calculated within the framework of
a semirelativistic effective QCD Hamiltonian, using a diquark picture. This
approximation allows a correct treatment of the confinement, assumed here to be
similar to a Y-junction. With only color antitriplet diquarks, the mass of the
pentaquark candidate with positive parity is found around 2.2 GeV. It
is shown that, if a color sextet diquark is present, the lowest
pentaquark is characterized by a much smaller mass with a negative parity. A
mass below 1.7 GeV is computed, if the masses of the color antitriplet and
color sextet diquarks are taken similar
One dimensional Coulomb-like problem in deformed space with minimal length
Spectrum and eigenfunctions in the momentum representation for 1D Coulomb
potential with deformed Heisenberg algebra leading to minimal length are found
exactly. It is shown that correction due to the deformation is proportional to
square root of the deformation parameter. We obtain the same spectrum using
Bohr-Sommerfeld quantization condition.Comment: 11 pages, typos corrected, references adde
Hydrogen atom as an eigenvalue problem in 3D spaces of constant curvature and minimal length
An old result of A.F. Stevenson [Phys. Rev.} 59, 842 (1941)] concerning the
Kepler-Coulomb quantum problem on the three-dimensional (3D) hypersphere is
considered from the perspective of the radial Schr\"odinger equations on 3D
spaces of any (either positive, zero or negative) constant curvature. Further
to Stevenson, we show in detail how to get the hypergeometric wavefunction for
the hydrogen atom case. Finally, we make a comparison between the ``space
curvature" effects and minimal length effects for the hydrogen spectrumComment: 6 pages, v
One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum
We present exact energy eigenvalues and eigenfunctions of the one-dimensional
hydrogen atom in the framework of the Generalized (Gravitational) Uncertainty
Principle (GUP). This form of GUP is consistent with various theories of
quantum gravity such as string theory, loop quantum gravity, black-hole
physics, and doubly special relativity and implies a minimal length uncertainty
and a maximal momentum. We show that the quantized energy spectrum exactly
agrees with the semiclassical results.Comment: 10 pages, 1 figur
Axisymmetric equilibria of a gravitating plasma with incompressible flows
It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric
gravitating magnetically confined plasma with incompressible flows is governed
by a second-order elliptic differential equation for the poloidal magnetic flux
function containing five flux functions coupled with a Poisson equation for the
gravitation potential, and an algebraic relation for the pressure. This set of
equations is amenable to analytic solutions. As an application, the
magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma
currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev.
Lett. {\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal
currents, subject to gravitating forces from a massive body (a star or black
hole) and inertial forces due to incompressible sheared flows. Explicit
solutions are obtained in two regimes: (a) in the low-energy regime
, where
, , , and are related to the thermal,
poloidal-current, flow and gravitating energies normalized to the
poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime
. It turns out
that in the high-energy regime all four forces, pressure-gradient,
toroidal-magnetic-field, inertial, and gravitating contribute equally to the
formation of magnetic surfaces very extended and localized about the symmetry
plane such that the resulting equilibria resemble the accretion disks in
astrophysics.Comment: 12 pages, latex, to be published in Geophys. Astrophys. Fluid
Dynamic
A unified meson-baryon potential
We study the spectra of mesons and baryons, composed of light quarks, in the
framework of a semirelativistic potential model including instanton induced
forces. We show how a simple modification of the instanton interaction in the
baryon sector allows a good description of the meson and the baryon spectra
using an interaction characterized by a unique set of parameters.Comment: 7 figure
- …