21 research outputs found

    Finite volume corrections to the electromagnetic current of the nucleon

    Full text link
    We compute corrections to both the isovector anomalous magnetic moment and the isovector electromagnetic current of the nucleon to O(p3)O(p^3) in the framework of covariant two-flavor Baryon Chiral Perturbation Theory. We then apply these corrections to lattice data for the anomalous magnetic moment from the LHPC, RBC & UKQCD and QCDSF collaborations

    Spin structure of the nucleon: QCD evolution, lattice results and models

    Full text link
    The question how the spin of the nucleon is distributed among its quark and gluon constituents is still a subject of intense investigations. Lattice QCD has progressed to provide information about spin fractions and orbital angular momentum contributions for up- and down-quarks in the proton, at a typical scale \mu^2~4 GeV^2. On the other hand, chiral quark models have traditionally been used for orientation at low momentum scales. In the comparison of such model calculations with experiment or lattice QCD, fixing the model scale and the treatment of scale evolution are essential. In this paper, we present a refined model calculation and a QCD evolution of lattice results up to next-to-next-to-leading order. We compare this approach with the Myhrer-Thomas scenario for resolving the proton spin puzzle.Comment: 11 pages, 6 figures, equation (9) has been corrected leading to a revised figure 1b. Revision matches published versio

    Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation

    Full text link
    We compute the axial and pseudoscalar form factors of the nucleon in the Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev equation for the nucleon wave function and determine the matrix elements of the axialvector and pseudoscalar isotriplet currents. Our only input is a well-established and phenomenologically successful ansatz for the nonperturbative quark-gluon interaction. As a consequence of the axial Ward-Takahashi identity that is respected at the quark level, the Goldberger-Treiman relation is reproduced for all current-quark masses. We discuss the timelike pole structure of the quark-antiquark vertices that enters the nucleon matrix elements and determines the momentum dependence of the form factors. Our result for the axial charge underestimates the experimental value by 20-25% which might be a signal of missing pion-cloud contributions. The axial and pseudoscalar form factors agree with phenomenological and lattice data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl

    Form factors in lattice QCD

    Full text link
    Lattice simulations of QCD have produced precise estimates for the masses of the lowest-lying hadrons which show excellent agreement with experiment. By contrast, lattice results for the vector and axial vector form factors of the nucleon show significant deviations from their experimental determination. We present results from our ongoing project to compute a variety of form factors with control over all systematic uncertainties. In the case of the pion electromagnetic form factor we employ partially twisted boundary conditions to extract the pion charge radius directly from the linear slope of the form factor near vanishing momentum transfer. In the nucleon sector we focus specifically on the possible contamination from contributions of higher excited states. We argue that summed correlation functions offer the possibility of eliminating this source of systematic error. As an illustration of the method we discuss our results for the axial charge, gA, of the nucleon.Comment: 16 pages, 11 figures, presented at Conclusive Symposium, CRC443, "Many-body structure of strongly interacting systems", 23-25 Feb 2011, Mainz, German

    Cosmological evolution of general scalar fields in a brane-world cosmology

    Full text link
    We study the cosmology of a general scalar field and barotropic fluid during the early stage of a brane-world where the Friedmann constraint is dominated by the square of the energy density. Assuming both the scalar field and fluid are confined to the brane, we find a range of behaviour depending on the form of the potential. Generalising an approach developed for a standard Friedmann cosmology, in \cite{delaMacorra:1999ff}, we show that the potential dependence V(ϕ)V(\phi) can be described through a parameter λ2m53/2V/(HV)\lambda \equiv -\sqrt{2} m_5^{3/2} V'/(\sqrt{H}V), where m5m_5 is the 5-dimensional Planck mass, HH is the Hubble parameter and VdVdϕV' \equiv \frac{dV}{d\phi}. For the case where λ\lambda asymptotes to zero, we show that the solution exhibits stable inflationary behaviour. On the other hand if it approaches a finite constant, then V(ϕ)1ϕ2V(\phi) \propto \frac{1}{\phi^2}. For λ\lambda \to \infty asymptotically, we find examples where it does so both with and without oscillating. In the latter case, the barotropic fluid dominates the scalar filed asymptotically. Finally we point out an interesting duality which leads to identical evolution equations in the high energy ρ2\rho^2 dominated regime and the low energy ρ\rho dominated regime.Comment: 10 pages, 3 figure
    corecore