3 research outputs found

    CdSe Nanocrystal Assemblies on Anodized TiO<sub>2</sub> Nanotubes: Optical, Surface, and Photoelectrochemical Properties

    No full text
    The in situ preparation of high-quality organically synthesized cadmium selenide (CdSe) nanocrystals on TiO<sub>2</sub> nanotubes (T_NT) prepared by anodization is presented. The deposition of CdSe nanocrystals has been facilitated under a high-pressure and low-viscosity solvothermal process. The formation, growth, and assembly of CdSe nanocrystals in the form of a dense film on T_NT have been studied using thermal (thermogravimetry and calorimetry) and optical (UV–vis and microscopy) techniques. It has been concluded that an organic treatment, followed by annealing under a nitrogen atmosphere at reduced temperatures, helps control CdSe nanocrystal morphology without causing significant particle size growth. Photoelectrochemical measurements indicate that the electrode assembly consisting of T_NT and CdSe can achieve a stable photocurrent density of 6.7 mA/cm<sup>2</sup> and a charge-separation efficiency of 35%

    Vacancy-mediated structural changes in Au–Cu nanoparticles

    No full text
    <p>We report the formation of new phases in bimetallic Au–Cu nanoparticles. These phases were observed in nanoparticle synthesised by adopting a three-step protocol in a single pot. Nanoparticles at 180°C for 1 h led to the formation of single-phase solid solution of Cu in Au. Subsequent heat treatment at 290°C for 2 h of these Au–Cu nanoparticles revealed three new phases. One of them relates to the modification of occupancy of Cu in an ordered AuCu tetragonal phase (tP4). This cell although retains tetragonal symmetry but displays metrical properties akin to that of a cube. The other two relates to vacancy ordering along <111> directions in the {111} planes of an ordered AuCu3 cubic phase (cP4). On the one hand, statistical occupancy of vacancy on Cu site in this cell leads to the reduction of cell size from ∌3.75 Å to ∌3.5 Å whereas ordering of vacant layer on the other hand gives rise to symmetry breaking. Former continues to display cubic symmetry whereas latter transforms to a trigonal cell.</p

    Engineered Solution–Liquid–Solid Growth of a “Treelike” 1D/1D TiO<sub>2</sub> Nanotube-CdSe Nanowire Heterostructure: Photoelectrochemical Conversion of Broad Spectrum of Solar Energy

    No full text
    This work presents a hitherto unreported approach to assemble a 1D oxide-1D chalcogenide heterostructured photoactive film. As a representative system, bismuth (Bi) catalyzed 1D CdSe nanowires are directly grown on anodized 1D TiO<sub>2</sub> nanotube (T_NT). A combination of the reductive successive-ionic-layer-adsorption-reaction (R-SILAR) and the solution–liquid–solid (S-L-S) approach is implemented to fabricate this heterostructured assembly, reported in this 1D/1D form for the first time. XRD, SEM, HRTEM, and elemental mapping are performed to systematically characterize the deposition of bismuth on T_NT and the growth of CdSe nanowires leading to the evolution of the 1D/1D heterostructure. The resulting “treelike” photoactive architecture demonstrates UV–visible light-driven electron–hole pair generation. The photoelectrochemical results highlight: (i) the formation of a stable n–n heterojunction between TiO<sub>2</sub> nanotube and CdSe nanowire, (ii) an excellent correlation between the absorbance vis-à-vis light conversion efficiency (IPCE), and (iii) a photocurrent density of 3.84 mA/cm<sup>2</sup>. This proof-of-concept features the viability of the approach for designing such complex 1D/1D oxide–chalcogenide heterostructures that can be of interest to photovoltaics, photocatalysis, environmental remediation, and sensing
    corecore