140 research outputs found

    P2Y\u3csub\u3e12\u3c/sub\u3e or P2Y\u3csub\u3e1\u3c/sub\u3e Inhibitors Reduce Platelet Deposition in a Microfluidic Model of Thrombosis while Apyrase Lacks Efficacy Under Flow Conditions

    Get PDF
    Determination of the patient-specific response to antiplatelet agents facilitates proper dosing for both acute and chronic prophylaxis. Closed systems (with or without flow) may fail to predict pharmacological potency in situations where platelets rapidly accumulate under flow conditions at the site of thrombosis ( Open systems). Using an 8-channel microfluidic flow assay of human whole blood with corn trypsin inhibitor (± PPACK) perfused over focul zones of collagen, dose-response curves were measured for pharmacological agents at a wall shear rate of 210 s-1. The P2Y1 inhibitor MRS 2179 (IC50 = 0.233 ± 0.132 µM) and P2Y12 inhibitor 2-MeSAMP (IC50 = 2.558 ± 0.799 µM) were potent blockers of secondary platelet accumulation under flow, while the P2X1 inhibitor (NF 449) and apyrase failed to reduce platelet accumulation. MRS 2179 and 2-MeSAMP and undetectable effects on initial platelet adhesion to collagen. Numerical simulation of convective-diffusive transport and apyrase-mediated catalytic degradation of ADP indicated that ultra-high concentrations of apyrase (~ 2000 U mL-1) would be required to have the same effect under flow as much lower concentrations (1 U mL-1) currently used in closed systems (aggregometry or cone-and-plate viscometer). This is the first evaluation of IC50 values for P2Y12 and P2Y1 antagonists under controlled flow conditions. Evaluation of antiplatelet agents in open flow systems demonstrates that inhibition of either ADP by apyrase or antagonism of P2X1 signaling had no inhibitory effect on platelet accumulation. This technique provides a platform for rapidly investigating effects of antithrombotic therapies simultaneously in a model injury system

    PAR1 activation initiates integrin engagement and outside-in signalling in megakaryoblastic CHRF-288 cells

    Get PDF
    AbstractTo better understand the means by which cells such as human platelets regulate the binding of the integrin αIIbβ3 to fibrinogen, we have examined agonist-initiated inside-out and outside-in signalling in CHRF-288 cells, a megakaryoblastic cell line that expresses αIIbβ3 and the human thrombin receptor, PAR1. The results show several notable similarities and differences. (1) Activation of PAR1 caused CHRF-288 cells to adhere and spread on immobilized fibrinogen in an αIIbβ3-dependent manner, but did not support the binding of soluble fibrinogen or PAC-1, an antibody specific for activated αIIbβ3. (2) Direct activation of protein kinase C with PMA or disruption of the actin cytoskeleton with low concentrations of cytochalasin D also caused CHRF-288 cells to adhere to fibrinogen. (3) Despite the failure to bind soluble fibrinogen, activation of PAR1 in CHRF-288 cells caused phosphoinositide hydrolysis, arachidonate mobilization and the phosphorylation of p42MAPK, phospholipase A2 and the Rac exchange protein, Vav, all of which occur in platelets. PAR1 activation also caused an increase in cytosolic Ca2+, which, when prevented, blocked adhesion to fibrinogen. (4) Finally, as in platelets, adhesion of CHRF-288 cells to fibrinogen was followed by a burst of integrin-dependent (‘outside-in’) signalling, marked by FAK phosphorylation and a more prolonged phosphorylation of p42MAPK. However, in contrast to platelets, adhesion to fibrinogen had no effect on Vav phosphorylation. Collectively, these observations show that signalling initiated through PAR1 in CHRF-288 cells can support αIIbβ3 binding to immobilized ligand, but not the full integrin activation needed to bind soluble ligand. This would suggest that there has been an increase in integrin avidity without an accompanying increase in affinity. Such increases in avidity are thought to be due to integrin clustering, which would also explain the results obtained with cytochalasin D. The failure of αIIbβ3 to achieve the high affinity state in CHRF-288 cells was not due to the failure of PAR1 activation to initiate a number of signalling events that normally accompany platelet activation nor did it prevent at least some forms of outside-in signalling. However, at least one marker of outside-in signalling, the augmentation of Vav phosphorylation seen during platelet aggregation, did not occur in CHRF-288 cells

    RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists.

    Get PDF
    Platelets express ≥2 members of the regulators of G protein signaling (RGS) family. Here, we have focused on the most abundant, RGS10, examining its impact on the hemostatic response in vivo and the mechanisms involved. We have previously shown that the hemostatic thrombi formed in response to penetrating injuries consist of a core of fully activated densely packed platelets overlaid by a shell of less-activated platelets responding to adenosine 5\u27-diphosphate (ADP) and thromboxane A2 (TxA2). Hemostatic thrombi formed in RGS10-/- mice were larger than in controls, with the increase due to expansion of the shell but not the core. Clot retraction was slower, and average packing density was reduced. Deleting RGS10 had agonist-specific effects on signaling. There was a leftward shift in the dose/response curve for the thrombin receptor (PAR4) agonist peptide AYPGKF but no increase in the maximum response. This contrasted with ADP and TxA2, both of which evoked considerably greater maximum responses in RGS10-/- platelets with enhanced Gq- and Gi-mediated signaling. Shape change, which is G13-mediated, was unaffected. Finally, we found that free RGS10 levels in platelets are actively regulated. In resting platelets, RGS10 was bound to 2 scaffold proteins: spinophilin and 14-3-3γ. Platelet activation caused an increase in free RGS10, as did the endothelium-derived platelet antagonist prostacyclin. Collectively, these observations show that RGS10 serves as an actively regulated node on the platelet signaling network, helping to produce smaller and more densely packed hemostatic thrombi with a greater proportion of fully activated platelets

    Thrombin Receptors on Human Platelets INITIAL LOCALIZATION AND SUBSEQUENT REDISTRIBUTION DURING PLATELET ACTIVATION

    Get PDF
    Platelet responses to thrombin are at least partly mediated by a G-protein-coupled receptor whose NH2 terminus is a substrate for thrombin. In the present studies we have examined the location of thrombin receptors in resting platelets and followed their redistribution during platelet activation. The results reveal several new aspects of thrombin receptor biology. 1) On resting platelets, approximately two-thirds of the receptors were located in the plasma membrane. The remainder were present in the membranes of the surface connecting system. 2) When platelets were activated by ADP or a thromboxane analog, thrombin receptors that were initially in the surface connecting system were exposed on the platelet surface, increasing the number of detectable receptors by 40% and presumably making them available for subsequent activation by thrombin. 3) Platelet activation by thrombin rapidly abolished the binding of the antibodies whose epitopes are sensitive to receptor cleavage and left the platelets in a state refractory to both thrombin and the agonist peptide, SFLLRN. This was accompanied by a 60% decrease in the binding of receptor antibodies directed COOH-terminal to the cleavage site irrespective of whether the receptors were activated proteolytically by thrombin or nonproteolytically by SFLLRN. 4) The loss of antibody binding sites caused by thrombin was due in part to receptor internalization and in part to the shedding of thrombin receptors into membrane microparticles, especially under conditions in which aggregation was allowed to occur. However, at least 40% of the cleaved receptors remained on the platelet surface. 5) Lacking the ability to synthesize new receptors and lacking an intracellular reserve of preformed receptors comparable to that found in endothelial cells, platelets were unable to repopulate their surface with intact receptors following exposure to thrombin. This difference underlies the ability of endothelial cells to recover responsiveness to thrombin rapidly while platelets do not, despite the presence on both of the same receptor for thrombin

    Internalization and recycling of activated thrombin receptors

    Get PDF
    Shortly after activation by either thrombin or the tethered ligand domain peptide SFLLRN, thrombin receptors undergo homologous desensitization, temporarily losing their ability to respond to both agonists. We have examined the role of receptor internalization and recycling in this process using receptor-directed antibodies as probes. The results show within 1 min of activation >85% of the approximately 200,000 thrombin receptors on megakaryoblastic human erythroleukemia (HEL) and CHRF-288 cells are sequestered into endosomes via coated pits, after which the majority are transferred to lysosomes. This process does not require proteolysis of the receptor and occurs with sufficient speed to play a major role in the regulation of thrombin receptor function. Although most of the internalized receptors are ultimately degraded, approximately 25% return to the cell surface. These recycled receptors are in a state in which they can respond to SFLLRN but not thrombin; nor do they self-activate despite the apparent continued presence of the tethered ligand. In contrast to other G protein-coupled receptors, which are internalized and then recycled in an activatable state, recovery of the thrombin response occurs only after the expression on the cell surface of adequate numbers of newly synthesized receptors

    GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets.

    Get PDF
    G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5\u27-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation

    Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1.

    Get PDF
    The recent identification of two new thrombin receptors, PAR3 and PAR4, led us to re-examine the basis for endothelial cell responses to thrombin. Human umbilical vein endothelial cells (HUVEC) are known to express PAR1 and the trypsin/tryptase receptor, PAR2. Northern blots detected both of those receptors and, to a lesser extent, PAR3, but PAR4 message was undetectable and there was no response to PAR4 agonist peptides. To determine whether PAR3 or any other receptor contributes to thrombin signaling in HUVEC, PAR1 cleavage was blocked with two selective antibodies and PAR1 activation was inhibited with the antagonist, BMS200261. The antibodies completely inhibited HUVEC responses to thrombin, but BMS200261 was only partly effective, even though separate studies established that the antagonist completely inhibits PAR1 signaling at the concentrations used. Since peptides mimicking the PAR1 tethered ligand domain can also activate PAR2, we asked whether the remaining thrombin response in the presence of the antagonist could be due in part to the intermolecular transactivation of PAR2 by cleaved PAR1. Evidence that transactivation can occur was obtained in COS-7 cells co-expressing PAR2 and a variant of PAR1 that can be cleaved, but not signal. There was a substantial response to thrombin only in cells expressing both receptors. Conversely, in HUVEC, complete blockade of the thrombin response by the PAR1 antagonist occurred only when signaling through PAR2 was also blocked. From these observations we conclude that 1) PAR1 is the predominant thrombin receptor expressed in HUVEC and cleavage of PAR1 is required for endothelial cell responses to thrombin; 2) although PAR3 may be expressed, there is still no evidence that it mediates thrombin responses; 3) PAR4 is not expressed on HUVEC; and 4) transactivation of PAR2 by cleaved PAR1 can contribute to endothelial cell responses to thrombin, particularly when signaling through PAR1 is blocked. Such transactivation may limit the effectiveness of PAR1 antagonists, which compete with the tethered ligand domain rather than preventing PAR1 cleavage

    Endothelial Cell Thrombin Receptors and PAR-2 TWO PROTEASE-ACTIVATED RECEPTORS LOCATED IN A SINGLE CELLULAR ENVIRONMENT

    Get PDF
    Human endothelial cells express thrombin receptors and PAR-2, the two known members of the family of protease-activated G protein-coupled receptors. Because previous studies have shown that the biology of the human thrombin receptor varies according to the cell in which it is expressed, we have taken advantage of the presence of both receptors in endothelial cells to examine the enabling and disabling interactions with candidate proteases likely to be encountered in and around the vascular space to compare the responses elicited by the two receptors when they are present in the same cell and to compare the mechanisms of thrombin receptor and PAR-2 clearance and replacement in a common cellular environment. Of the proteases that were tested, only trypsin activated both receptors. Cathepsin G, which disables thrombin receptors, had no effect on PAR-2, while urokinase, kallikrein, and coagulation factors IXa, Xa, XIa, and XIIa neither substantially activated nor noticeably disabled either receptor. Like thrombin receptors, activation of PAR-2 caused pertussis toxin-sensitive phospholipase C activation as well as activation of phospholipase A2, leading to the release of PGI2. Concurrent activation of both receptors caused a greater response than activation of either alone. It also abolished a subsequent response to the PAR-2 agonist peptide, SLIGRL, while only partially inhibiting the response to the agonist peptide, SFLLRN, which activates both receptors. After proteolytic or nonproteolytic activation, PAR-2, like thrombin receptors, was cleared from the endothelial cell surface and then rapidly replaced with new receptors by a process that does not require protein synthesis. Selective activation of either receptor had no effect on the clearance of the other. These results suggest that the expression of both thrombin receptors and PAR-2 on endothelial cells serves more to extend the range of proteases to which the cells can respond than it does to extend the range of potential responses. The results also show that proteases that can disable these receptors can distinguish between them, just as do most of the proteases that activate them. Finally, the residual response to SFLLRN after activation of thrombin receptors and PAR-2 raises the possibility that a third, as yet unidentified member of this family is expressed on endothelial cells, one that is activated by neither thrombin nor trypsin
    corecore