48 research outputs found

    Administration of a low-cost quantitative continuous measurement of movements of the extremities of people with Parkinson’s disease

    No full text
    A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson’s disease was developed to enhance the gold-standard structured assessment of people with Parkinson’s disease (PD) assessed by the visual observation by the examiner of the person with PD (Goetz, et al., 2008) with the recorded output of signals to document the three dimensions of the positions in space of the finger and wrist or the toe and ankle of the participant performing tasks that may be impaired in people with PD (McKay, et al., 2019). The accelerometers were taped to the dorsal surface of the second (middle) phalanx of the index finger and the dorsum of the arm midway between the radius and the ulna two inches from the wrist joint to measure the movements in the upper extremity and to the dorsal surface of the proximal phalanx of the first (big) toe and the anterior surface of the tibia two inches proximal to the medial malleolus to measure the movements of the lower extremity (McKay, et al.,2019). The examiner instructed the participant how to perform each task. The examiner demonstrated the movements. The examiner did not continue to perform the movements while the participant was performing them. After the participant began the task, the examiner instructed the participant to perform each movement as quickly and fully as possible. The examiner encouraged the participant to execute each motion with the maximal speed and range of motion. The examiner sought to capture at least ten optimal repetitions for each motion. In order to attain a minimum of ten top-notch repetitions the examiner asked the participant to perform many more repetitions. The ten optimal repetitions could later be extracted for further analysis. The data shows a trained examiner administering the procedures to a healthy 68-year-old male participant with typical development. A videographer recorded the performance of the procedure by the participant.The data from this procedure performed on cohorts of individuals with Parkinson’s disease and multiple system atrophy and healthy age- and sex-matched individuals with typical development have been published (Harrigan, et al., 2020)

    Administration of a low-cost quantitative continuous measurement of movements of the extremities of people with Parkinson’s disease

    No full text
    A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson’s disease was developed to enhance the gold-standard structured assessment of people with Parkinson’s disease (PD) assessed by the visual observation by the examiner of the person with PD (Goetz, et al., 2008) with the recorded output of signals to document the three dimensions of the positions in space of the finger and wrist or the toe and ankle of the participant performing tasks that may be impaired in people with PD (McKay, et al., 2019). The accelerometers were taped to the dorsal surface of the second (middle) phalanx of the index finger and the dorsum of the arm midway between the radius and the ulna two inches from the wrist joint to measure the movements in the upper extremity and to the dorsal surface of the proximal phalanx of the first (big) toe and the anterior surface of the tibia two inches proximal to the medial malleolus to measure the movements of the lower extremity (McKay, et al.,2019). The examiner instructed the participant how to perform each task. The examiner demonstrated the movements. The examiner did not continue to perform the movements while the participant was performing them. After the participant began the task, the examiner instructed the participant to perform each movement as quickly and fully as possible. The examiner encouraged the participant to execute each motion with the maximal speed and range of motion. The examiner sought to capture at least ten optimal repetitions for each motion. In order to attain a minimum of ten top-notch repetitions the examiner asked the participant to perform many more repetitions. The ten optimal repetitions could later be extracted for further analysis. The data shows a trained examiner administering the procedures to a healthy 68-year-old male participant with typical development. A videographer recorded the performance of the procedure by the participant.The data from this procedure performed on cohorts of individuals with Parkinson’s disease and multiple system atrophy and healthy age- and sex-matched individuals with typical development have been published (Harrigan, et al., 2020)

    Strategies for scanning challenging patients

    No full text
    The contributors participated in a webinar entitled "Strategies for scanning challenging patients." The webinar included five speeches of 5 to 7 minutes followed by a panel discussion to answer questions from the audience. The speakers prepared questions, answers, explanations, and references for the key points in their speeches

    Classification of Extremity Movements by Visual Observation of Signal Transforms

    No full text
    A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson's disease (McKay, 2019) provides the means to express the dysfunction of movements commonly seen in people with Parkinson's disease (PD) in the form of the signals of instrumentation capturing the three-dimensional position in space of the extremities during movements. The goal of the current protocol is to provide the means to obtain objective assessments of the signals and transforms of the output of our low-cost quantitative continuous measurement of movements in the extremities of people with PD (McKay, 2019; Harrigan, 2020). To attain this end, we sought to develop a method for 35 experts to blindly rate the signals and transforms of our quantitative continuous measurement of movements in the extremities of cohorts of people with PD and control and comparison groups (McKay, 2019; Harrigan, 2020; Ziegelman, 2020).Thus, we conducted an investigation to apply our accelerometry-based method for the acquisition of motion data for the twelve tasks (McKay, 2019) on 20 patients with PD, one patient with multiple system atrophy (MSA), a condition with some traits characteristic of PD, and 8 healthy age- and sex-matched healthy individuals with typical development (TD). The original output from the instrumentation was stored on the laptop used for the study. Subsequent analysis has been restricted to the five repetitive tasks (3.4 Finger tapping, 3.5 Hand movements, 3.6 Pronation-supination movements of hands, 3.7 Toe tapping, 3.8 Leg agility) (Ziegelman 2021). The signals and the fast Fourier transforms (FFTs) and continuous wavelet transforms (CWTs) of the signals of the five repetitive items have been published (Harrigan 2020, 2022). However, the published materials express data in varying formats that cannot be correlated for blind ratings by experts without access to the original data. The published data are in separate datasets that cannot be combined by humans using visual observation. For this reason, we sought to develop a protocol to express the signals and the transforms of the five repetitive movements of each of the cohorts in a format suitable for blind rating by experts unfamiliar with the original data.In order to verify that each rater was qualified to participate as a rater, potential raters participated in weekly online research team meetings including instruction by a biomedical engineer and a mechanical engineer in the expression of output signals as FFTs and CWTs. Raters were asked to perform ratings independently without consultation with others. Because the research team of expert raters included people throughout the world, raters were allowed to view the images as long as they wanted. They were allowed to change ratings. They could take as much time as they wanted to complete and submit each set of ratings

    Classification of Extremity Movements by Visual Observation of Signal Transforms

    No full text
    A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson's disease (McKay, 2019) provides the means to express the dysfunction of movements commonly seen in people with Parkinson's disease (PD) in the form of the signals of instrumentation capturing the three-dimensional position in space of the extremities during movements. The goal of the current protocol is to provide the means to obtain objective assessments of the signals and transforms of the output of our low-cost quantitative continuous measurement of movements in the extremities of people with PD (McKay, 2019; Harrigan, 2020). To attain this end, we sought to develop a method for 35 experts to blindly rate the signals and transforms of our quantitative continuous measurement of movements in the extremities of cohorts of people with PD and control and comparison groups (McKay, 2019; Harrigan, 2020; Ziegelman, 2020).Thus, we conducted an investigation to apply our accelerometry-based method for the acquisition of motion data for the twelve tasks (McKay, 2019) on 20 patients with PD, one patient with multiple system atrophy (MSA), a condition with some traits characteristic of PD, and 8 healthy age- and sex-matched healthy individuals with typical development (TD). The original output from the instrumentation was stored on the laptop used for the study. Subsequent analysis has been restricted to the five repetitive tasks (3.4 Finger tapping, 3.5 Hand movements, 3.6 Pronation-supination movements of hands, 3.7 Toe tapping, 3.8 Leg agility) (Ziegelman 2021). The signals and the fast Fourier transforms (FFTs) and continuous wavelet transforms (CWTs) of the signals of the five repetitive items have been published (Harrigan 2020, 2022). However, the published materials express data in varying formats that cannot be correlated for blind ratings by experts without access to the original data. The published data are in separate datasets that cannot be combined by humans using visual observation. For this reason, we sought to develop a protocol to express the signals and the transforms of the five repetitive movements of each of the cohorts in a format suitable for blind rating by experts unfamiliar with the original data.In order to verify that each rater was qualified to participate as a rater, potential raters participated in weekly online research team meetings including instruction by a biomedical engineer and a mechanical engineer in the expression of output signals as FFTs and CWTs. Raters were asked to perform ratings independently without consultation with others. Because the research team of expert raters included people throughout the world, raters were allowed to view the images as long as they wanted. They were allowed to change ratings. They could take as much time as they wanted to complete and submit each set of ratings. The overall scheme of the and retest is presented in the attach Form-Link Master Sheet

    Repetitive tasks from a low-cost quantitative continuous measurement of movements of the extremities of people with Parkinson’s disease

    No full text
    A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson’s disease was developed to enhance the gold-standard structured assessment of people with Parkinson’s disease (PD) assessed by the visual observation by the examiner of the person with PD (Goetz, et al., 2008) with the recorded output of signals to document the three dimensions of the positions in space of the finger and wrist or the toe and ankle of the participant performing tasks that may be impaired by PD (McKay, et al., 2019). The accelerometers were taped to the dorsal surface of the second (middle) phalanx of the index finger and the dorsum of the arm midway between the radius and the ulna two inches from the wrist joint to measure the movements in the upper extremity and to the dorsal surface of the proximal phalanx of the first (big) toe and the anterior surface of the tibia two inches proximal to the medial malleolus to measure the movements of the lower extremity (McKay, et al.,2019). The examiner instructed the participant how to perform each task. The examiner demonstrated the movements. The examiner did not continue to perform the movements while the participant was performing them. The examiner instructed the participant to perform each movement as quickly and fully as possible. The examiner encouraged the participant to execute each motion with the maximal speed and range of motion. The examiner sought to capture at least ten optimal repetitions for each motion. In order to attain a minimum of ten top-notch repetitions the examiner asked the participant to perform many more repetitions. The ten optimal repetitions could later be extracted for further analysis. The data shows trained examiner administering the procedures to a healthy 68-year-old male participant with typical development. The data from this procedure performed on cohorts of individuals with Parkinson’s disease and multiple system atrophy and healthy age- and sex-matched individuals with typical development have been published (Harrigan, et al., 2020).THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Administration of a low-cost quantitative continuous measurement of movements of the extremities of people with Parkinson’s disease

    No full text
    A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson’s disease was developed to enhance the gold-standard structured assessment of people with Parkinson’s disease (PD) assessed by the visual observation by the examiner of the person with PD (Goetz, et al., 2008) with the recorded output of signals to document the three dimensions of the positions in space of the finger and wrist or the toe and ankle of the participant performing tasks that may be impaired in people with PD (McKay, et al., 2019). The accelerometers were taped to the dorsal surface of the second (middle) phalanx of the index finger and the dorsum of the arm midway between the radius and the ulna two inches from the wrist joint to measure the movements in the upper extremity and to the dorsal surface of the proximal phalanx of the first (big) toe and the anterior surface of the tibia two inches proximal to the medial malleolus to measure the movements of the lower extremity (McKay, et al.,2019). The examiner instructed the participant how to perform each task. The examiner demonstrated the movements. The examiner did not continue to perform the movements while the participant was performing them. After the participant began the task, the examiner instructed the participant to perform each movement as quickly and fully as possible. The examiner encouraged the participant to execute each motion with the maximal speed and range of motion. The examiner sought to capture at least ten optimal repetitions for each motion. In order to attain a minimum of ten top-notch repetitions the examiner asked the participant to perform many more repetitions. The ten optimal repetitions could later be extracted for further analysis. The data shows a trained examiner administering the procedures to a healthy 68-year-old male participant with typical development. A videographer recorded the performance of the procedure by the participant.The data from this procedure performed on cohorts of individuals with Parkinson’s disease and multiple system atrophy and healthy age- and sex-matched individuals with typical development have been published (Harrigan, et al., 2020).THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore