685 research outputs found

    Polynomial Time Construction for Spatially Balanced Latin Squares

    Full text link
    In this paper we propose a construction that generates spatially balanced Latin squares (SBLSs) in polynomial time. These structures are central to the design of agronomic experiments, as they avoid biases that are otherwise unintentionally introduced due to spatial auto-correlation. Previous approaches were able to generate SBLSs of order up to 35 and required about two weeks of computation. Our algorithm runs in O(n2) and generates SBLSs of arbitrary order n where 2n + 1 is prime. For example, this algorithm generates a SBLS of order 999 in a fraction of a second.National Science Foundation (NSF Expeditions in Computing award for Computational Sustainability, grant 0832782; NSF IIS award, grant 0514429), Intelligent Information Systems Institute, Cornell University (Air Force O ce of Scienti c Research, AFOSR, grant FA9550-04-1-0151), Natural Sciences and Engineering Research Council of Canada (NSERC

    Challenges in Collaborative HRI for Remote Robot Teams

    Get PDF
    Collaboration between human supervisors and remote teams of robots is highly challenging, particularly in high-stakes, distant, hazardous locations, such as off-shore energy platforms. In order for these teams of robots to truly be beneficial, they need to be trusted to operate autonomously, performing tasks such as inspection and emergency response, thus reducing the number of personnel placed in harm's way. As remote robots are generally trusted less than robots in close-proximity, we present a solution to instil trust in the operator through a `mediator robot' that can exhibit social skills, alongside sophisticated visualisation techniques. In this position paper, we present general challenges and then take a closer look at one challenge in particular, discussing an initial study, which investigates the relationship between the level of control the supervisor hands over to the mediator robot and how this affects their trust. We show that the supervisor is more likely to have higher trust overall if their initial experience involves handing over control of the emergency situation to the robotic assistant. We discuss this result, here, as well as other challenges and interaction techniques for human-robot collaboration.Comment: 9 pages. Peer reviewed position paper accepted in the CHI 2019 Workshop: The Challenges of Working on Social Robots that Collaborate with People (SIRCHI2019), ACM CHI Conference on Human Factors in Computing Systems, May 2019, Glasgow, U

    Rapid export of waters formed by convection near the Irminger Sea's western boundary

    Get PDF
    The standard view of the overturning circulation emphasizes the role of convection, yet for waters to contribute to overturning, they must not only be transformed to higher densities but also exported equatorward. From novel mooring observations in the Irminger Sea (2014–2016), we describe two water masses that are formed by convection and show that they have different rates of export in the western boundary current. Upper Irminger Sea Intermediate Water appears to form near the boundary current and is exported rapidly within 3 months of its formation. Deep Irminger Sea Intermediate Water forms in the basin interior and is exported on longer time scales. The subduction of these waters into the boundary current is consistent with an eddy transport mechanism. Our results suggest that light intermediate waters can contribute to overturning as much as waters formed by deeper convection and that the export time scales of both project onto overturning variability. Plain Language Summary The deep ocean can regulate the Earth's climate by storing carbon and heat. At high latitudes, waters are cooled by the atmosphere and sink, but they can only be successfully stored in the deep ocean if they are exported toward the equator. In this study, we analyze new mooring observations in the Irminger Sea to investigate the cooling and export of high‐latitude waters. In addition to the well‐documented waters that are cooled in the center of the Irminger Sea, we find that saltier waters are cooled near the western boundary current. Both of these water types make it into boundary current and are exported. Our observations are consistent with the dynamics of swirling eddy motions. The eddy transport process is more effective for the waters cooled near the boundary current, implying that cooling near boundary currents may be more important for the climate than has been appreciated to date
    corecore