18 research outputs found
Assessing Antiangiogenic Therapy Response by DCE-MRI: Development of a Physiology Driven Multi-Compartment Model Using Population Pharmacometrics
Dynamic contrast enhanced (DCE-) MRI is commonly applied for the monitoring of antiangiogenic therapy in oncology. Established pharmacokinetic (PK) analysis methods of DCE-MRI data do not sufficiently reflect the complex anatomical and physiological constituents of the analyzed tissue. Hence, accepted endpoints such as Ktrans reflect an unknown multitude of local and global physiological effects often rendering an understanding of specific local drug effects impossible. In this work a novel multi-compartment PK model is presented, which for the first time allows the separation of local and systemic physiological effects. DCE-MRI data sets from multiple, simultaneously acquired tissues, i.e. spinal muscle, liver and tumor tissue, of hepatocellular carcinoma (HCC) bearing rats were applied for model development. The full Markov chain Monte Carlo (MCMC) Bayesian analysis method was applied for model parameter estimation and model selection was based on histological and anatomical considerations and numerical criteria. A population PK model (MTL3 model) consisting of 3 measured and 6 latent (unobserved) compartments was selected based on Bayesian chain plots, conditional weighted residuals, objective function values, standard errors of model parameters and the deviance information criterion. Covariate model building, which was based on the histology of tumor tissue, demonstrated that the MTL3 model was able to identify and separate tumor specific, i.e. local, and systemic, i.e. global, effects in the DCE-MRI data. The findings confirm the feasibility to develop physiology driven multi-compartment PK models from DCE-MRI data. The presented MTL3 model allowed the separation of a local, tumor specific therapy effect and thus has the potential for identification and specification of effectors of vascular and tissue physiology in antiangiogenic therapy monitoring
Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation
Morphogenesis of a vascular network requires dynamic vessel growth and regression. To investigate the cellular mechanism underlying this process, we deleted focal adhesion kinase (FAK), a key signaling mediator, in endothelial cells (ECs) using Tie2-Cre mice. Targeted FAK depletion occurred efficiently early in development, where mutants exhibited a distinctive and irregular vasculature, resulting in hemorrhage and lethality between embryonic day (e) 10.5 and 11.5. Capillaries and intercapillary spaces in yolk sacs were dilated before any other detectable abnormalities at e9.5, and explants demonstrate that the defects resulted from the loss of FAK and not from organ failure. Time-lapse microscopy monitoring EC behavior during vascular formation in explants revealed no apparent decrease in proliferation or migration but revealed increases in cell retraction and death leading to reduced vessel growth and increased vessel regression. Consistent with this phenotype, ECs derived from mutant embryos exhibited aberrant lamellipodial extensions, altered actin cytoskeleton, and nonpolarized cell movement. This study reveals that FAK is crucial for vascular morphogenesis and the regulation of EC survival and morphology
ICoNIK: Generating Respiratory-Resolved Abdominal MR Reconstructions Using Neural Implicit Representations in k-Space
Motion-resolved reconstruction for abdominal magnetic resonance imaging (MRI)
remains a challenge due to the trade-off between residual motion blurring
caused by discretized motion states and undersampling artefacts. In this work,
we propose to generate blurring-free motion-resolved abdominal reconstructions
by learning a neural implicit representation directly in k-space (NIK). Using
measured sampling points and a data-derived respiratory navigator signal, we
train a network to generate continuous signal values. To aid the regularization
of sparsely sampled regions, we introduce an additional informed correction
layer (ICo), which leverages information from neighboring regions to correct
NIK's prediction. Our proposed generative reconstruction methods, NIK and
ICoNIK, outperform standard motion-resolved reconstruction techniques and
provide a promising solution to address motion artefacts in abdominal MRI
Gradient nonlinearity correction in liver DWI using motion-compensated diffusion encoding waveforms
OBJECTIVE : To experimentally characterize the effectiveness of a gradient nonlinearity correction method in removing ADC bias for different motion-compensated diffusion encoding waveforms.!##!Methods!#!The diffusion encoding waveforms used were the standard monopolar Stejskal-Tanner pulsed gradient spin echo (pgse) waveform, the symmetric bipolar velocity-compensated waveform (sym-vc), the asymmetric bipolar velocity-compensated waveform (asym-vc) and the asymmetric bipolar partial velocity-compensated waveform (asym-pvc). The effectiveness of the gradient nonlinearity correction method using the spherical harmonic expansion of the gradient coil field was tested with the aforementioned waveforms in a phantom and in four healthy subjects.!##!Results!#!The gradient nonlinearity correction method reduced the ADC bias in the phantom experiments for all used waveforms. The range of the ADC values over a distance of ± 67.2 mm from isocenter reduced from 1.29 × 10!##!Conclusion!#!The investigated gradient nonlinearity correction method can be used effectively with various motion-compensated diffusion encoding waveforms. In coronal liver DWI, ADC errors caused by motion and residual vessel signal can be increased even further by the gradient nonlinearity correction
Acceleration of chemical shift encoding-based water fat MRI for liver proton density fat fraction and T2* mapping using compressed sensing.
ObjectivesTo evaluate proton density fat fraction (PDFF) and T2* measurements of the liver with combined parallel imaging (sensitivity encoding, SENSE) and compressed sensing (CS) accelerated chemical shift encoding-based water-fat separation.MethodsSix-echo Dixon imaging was performed in the liver of 89 subjects. The first acquisition variant used acceleration based on SENSE with a total acceleration factor equal to 2.64 (acquisition labeled as SENSE). The second acquisition variant used acceleration based on a combination of CS with SENSE with a total acceleration factor equal to 4 (acquisition labeled as CS+SENSE). Acquisition times were compared between acquisitions and proton density fat fraction (PDFF) and T2*-values were measured and compared separately for each liver segment.ResultsTotal scan duration was 14.5 sec for the SENSE accelerated image acquisition and 9.3 sec for the CS+SENSE accelerated image acquisition. PDFF and T2* values did not differ significantly between the two acquisitions (paired Mann-Whitney and paired t-test P>0.05 in all cases). CS+SENSE accelerated acquisition showed reduced motion artifacts (1.1%) compared to SENSE acquisition (12.3%).ConclusionCS+SENSE accelerates liver PDFF and T2*mapping while retaining the same quantitative values as an acquisition using only SENSE and reduces motion artifacts
Borderline-resectable pancreatic adenocarcinoma: Contour irregularity of the venous confluence in pre-operative computed tomography predicts histopathological infiltration.
PurposeThe purpose of the current study was to compare CT-signs of portal venous confluence infiltration for actual histopathological infiltration of the vein or the tumor/vein interface (TVI) in borderline resectable pancreatic ductal adenocarcinoma (PDAC).Methods and materials101 patients with therapy-naïve, primarily resected PDAC of the pancreatic head without arterial involvement were evaluated. The portal venous confluence was assessed for contour irregularity (defined as infiltration) and degree of contact. The sensitivity and specificity of contour irregularity versus tumor to vein contact >180° as well as the combination of the signs for tumor cell infiltration of the vessel wall or TVI was calculated. Overall survival (OS) was compared between groups.ResultsSensitivity and specificity of contour irregularity for identification of tumor infiltration of the portal venous confluence or the TVI was higher compared to tumor to vessel contact >180° for tumor cell infiltration (96%/79% vs. 91%/38% respectively, p180°/ both signs had significantly worse overall survival (16.2 vs. 26.5 months/ 17.9 vs. 37.4 months/ 18.5 vs. 26.5 months respectively, all pConclusionPortal venous confluence contour irregularity is a strong predictor of actual tumor cell infiltration of the vessel wall or the TVI and should be noted as such in radiological reports
High-Resolution, High b-Value Computed Diffusion-Weighted Imaging Improves Detection of Pancreatic Ductal Adenocarcinoma
Background: Our purpose was to investigate the potential of high-resolution, high b-value computed DWI (cDWI) in pancreatic ductal adenocarcinoma (PDAC) detection. Materials and Methods: We retrospectively enrolled 44 patients with confirmed PDAC. Respiratory-triggered, diffusion-weighted, single-shot echo-planar imaging (ss-EPI) with both conventional (i.e., full field-of-view, 3 × 3 × 4 mm voxel size, b = 0, 50, 300, 600 s/mm2) and high-resolution (i.e., reduced field-of-view, 2.5 × 2.5 × 3 mm voxel size, b = 0, 50, 300, 600, 1000 s/mm2) imaging was performed for suspected PDAC. cDWI datasets at b = 1000 s/mm2 were generated for the conventional and high-resolution datasets. Three radiologists were asked to subjectively rate (on a Likert scale of 1–4) the following metrics: image quality, lesion detection and delineation, and lesion-to-pancreas intensity relation. Furthermore, the following quantitative image parameters were assessed: apparent signal-to-noise ratio (aSNR), contrast-to-noise ratio (aCNR), and lesion-to-pancreas contrast ratio (CR). Results: High-resolution, high b-value computed DWI (r-cDWI1000) enabled significant improvement in lesion detection and a higher incidence of a high lesion-to-pancreas intensity relation (type 1, clear hyperintense) compared to conventional high b-value computed and high-resolution high b-value acquired DWI (f-cDWI1000 and r-aDWI1000, respectively). Image quality was rated inferior in the r-cDWI1000 datasets compared to r-aDWI1000. Furthermore, the aCNR and CR were higher in the r-cDWI1000 datasets than in f-cDWI1000 and r-aDWI1000. Conclusion: High-resolution, high b-value computed DWI provides significantly better visualization of PDAC compared to the conventional high b-value computed and high-resolution high b-value images acquired by DWI
Prospectively Accelerated T2-Weighted Imaging of the Prostate by Combining Compressed SENSE and Deep Learning in Patients with Histologically Proven Prostate Cancer
Background: To assess the performance of prospectively accelerated and deep learning (DL) reconstructed T2-weighted (T2w) imaging in volunteers and patients with histologically proven prostate cancer (PCa). Methods: Prospectively undersampled T2w datasets were acquired with acceleration factors of 1.7 (reference), 3.4 and 4.8 in 10 healthy volunteers and 23 patients with histologically proven PCa. Image reconstructions using compressed SENSE (C-SENSE) and a combination of C-SENSE and DL-based artificial intelligence (C-SENSE AI) were analyzed. Qualitative image comparison was performed using a 6-point Likert scale (overall image quality, noise, motion artifacts, lesion detection, diagnostic certainty); the T2 and PI-RADS scores were compared between the two reconstructions. Additionally, quantitative image parameters were assessed (apparent SNR, apparent CNR, lesion size, line profiles). Results: All C-SENSE AI-reconstructed images received a significantly higher qualitative rating compared to the C-SENSE standard images. Analysis of the quantitative parameters supported this finding, with significantly higher aSNR and aCNR. The line profiles demonstrated a significantly steeper signal change at the border of the prostatic lesion and the adjacent normal tissue in the C-SENSE AI-reconstructed images, whereas the T2 and PI-RADS scores as well as the lesion size did not differ. Conclusion: In this prospective study, we demonstrated the clinical feasibility of a novel C-SENSE AI reconstruction enabling a 58% acceleration in T2w imaging of the prostate while obtaining significantly better image quality