13 research outputs found

    A Surprising Failure? Multimodal LLMs and the NLVR Challenge

    Full text link
    This study evaluates three state-of-the-art MLLMs -- GPT-4V, Gemini Pro, and the open-source model IDEFICS -- on the compositional natural language vision reasoning task NLVR. Given a human-written sentence paired with a synthetic image, this task requires the model to determine the truth value of the sentence with respect to the image. Despite the strong performance demonstrated by these models, we observe they perform poorly on NLVR, which was constructed to require compositional and spatial reasoning, and to be robust for semantic and systematic biases

    Reviewer2: Optimizing Review Generation Through Prompt Generation

    Full text link
    Recent developments in LLMs offer new opportunities for assisting authors in improving their work. In this paper, we envision a use case where authors can receive LLM-generated reviews that uncover weak points in the current draft. While initial methods for automated review generation already exist, these methods tend to produce reviews that lack detail, and they do not cover the range of opinions that human reviewers produce. To address this shortcoming, we propose an efficient two-stage review generation framework called Reviewer2. Unlike prior work, this approach explicitly models the distribution of possible aspects that the review may address. We show that this leads to more detailed reviews that better cover the range of aspects that human reviewers identify in the draft. As part of the research, we generate a large-scale review dataset of 27k papers and 99k reviews that we annotate with aspect prompts, which we make available as a resource for future research

    lilGym: Natural Language Visual Reasoning with Reinforcement Learning

    Full text link
    We present lilGym, a new benchmark for language-conditioned reinforcement learning in visual environments. lilGym is based on 2,661 highly-compositional human-written natural language statements grounded in an interactive visual environment. We introduce a new approach for exact reward computation in every possible world state by annotating all statements with executable Python programs. Each statement is paired with multiple start states and reward functions to form thousands of distinct Markov Decision Processes of varying difficulty. We experiment with lilGym with different models and learning regimes. Our results and analysis show that while existing methods are able to achieve non-trivial performance, lilGym forms a challenging open problem. lilGym is available at https://lil.nlp.cornell.edu/lilgym/.Comment: ACL 2023 Long Pape

    Successor Feature Sets: Generalizing Successor Representations Across Policies

    Full text link
    Successor-style representations have many advantages for reinforcement learning: for example, they can help an agent generalize from past experience to new goals, and they have been proposed as explanations of behavioral and neural data from human and animal learners. They also form a natural bridge between model-based and model-free RL methods: like the former they make predictions about future experiences, and like the latter they allow efficient prediction of total discounted rewards. However, successor-style representations are not optimized to generalize across policies: typically, we maintain a limited-length list of policies, and share information among them by representation learning or GPI. Successor-style representations also typically make no provision for gathering information or reasoning about latent variables. To address these limitations, we bring together ideas from predictive state representations, belief space value iteration, successor features, and convex analysis: we develop a new, general successor-style representation, together with a Bellman equation that connects multiple sources of information within this representation, including different latent states, policies, and reward functions. The new representation is highly expressive: for example, it lets us efficiently read off an optimal policy for a new reward function, or a policy that imitates a new demonstration. For this paper, we focus on exact computation of the new representation in small, known environments, since even this restricted setting offers plenty of interesting questions. Our implementation does not scale to large, unknown environments -- nor would we expect it to, since it generalizes POMDP value iteration, which is difficult to scale. However, we believe that future work will allow us to extend our ideas to approximate reasoning in large, unknown environments

    Policy-Gradient Training of Language Models for Ranking

    Full text link
    Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks
    corecore