7,406 research outputs found

    International Adjustment with Wage Rigidity

    Get PDF
    Two of the puzzling macroeconomic phenomena of the 1970s have been the persistent stagnation in Europe, and the disagreement between the U.S. and Europe on the feasibility of recovery by demand expansion. This paper develops the hypothesis that the source of both the stagnation and the policy differences is money-wage stickiness in the U.S. and real-wage stickiness in Europe and Japan. A real wage which is sticky above its equilibrium level in Europe and Japan would account for stagnation and infeasibility of recovery by demand expansion. The theoretical models are developed in both the one-commodity and two-commodity-bundle cases. The empirical results confirm that in the U.S. the nominal wage adjusts slowly toward equilibrium, while in Germany, Italy, Japan, and the U.K. the real wage adjusts slowly.

    The C_2 heat-kernel coefficient in the presence of boundary discontinuities

    Get PDF
    We consider the heat-kernel on a manifold whose boundary is piecewise smooth. The set of independent geometrical quantities required to construct an expression for the contribution of the boundary discontinuities to the C_{2} heat-kernel coefficient is derived in the case of a scalar field with Dirichlet and Robin boundary conditions. The coefficient is then determined using conformal symmetry and evaluation on some specific manifolds. For the Robin case a perturbation technique is also developed and employed. The contributions to the smeared heat-kernel coefficient and cocycle function are calculated. Some incomplete results for spinor fields with mixed conditions are also presented.Comment: 25 pages, LaTe

    The coordination and distribution of B in foraminiferal calcite

    Get PDF
    The isotopic ratio and concentration of B in foraminiferal calcite appear to reflect the pH and bicarbonate concentration of seawater. The use of B as a chemical proxy tracer has the potential to transform our understanding of the global carbon cycle, and ocean acidification processes. However, discrepancies between the theory underpinning the B proxies, and mineralogical observations of B coordination in biomineral carbonates call the basis of these proxies into question. Here, we use synchrotron X-ray spectromicroscopy to show that B is hosted solely as trigonal BO3 in the calcite test of Amphistegina lessonii, and that B concentration exhibits banding at the micron length scale. In contrast to previous results, our observation of trigonal B agrees with the predictions of the theoretical mechanism behind B palaeoproxies. These data strengthen the use of B for producing palaeo-pH records. The observation of systematic B heterogeneity, however, highlights the complexity of foraminiferal biomineralisation, implying that B incorporation is modulated by biological or crystal growth processes.We would like to acknowledge David Nicol, Iris Buisman and Martin Walker for invaluable technical assistance, and James Bryson for his help with synchrotron data collection. Wewould like to thank Jean DeMouthe (California Academy of Sciences) and Mike Rumsey (Natural History Museum, London) for provision of B-containing minerals for use as reference materials. This work was funded by ERC (grant 2010-ADG-267931 to HE), NERC, Jesus College (Cambridge)and the US Department of Energy (via ALS).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0012821X15000849

    Einstein metrics in projective geometry

    Full text link
    It is well known that pseudo-Riemannian metrics in the projective class of a given torsion free affine connection can be obtained from (and are equivalent to) the solutions of a certain overdetermined projectively invariant differential equation. This equation is a special case of a so-called first BGG equation. The general theory of such equations singles out a subclass of so-called normal solutions. We prove that non-degerate normal solutions are equivalent to pseudo-Riemannian Einstein metrics in the projective class and observe that this connects to natural projective extensions of the Einstein condition.Comment: 10 pages. Adapted to published version. In addition corrected a minor sign erro

    Effective actions with fixed points, (error in derivation of coefficient corrected)

    Full text link
    The specific form of the constant term in the asymptotic expansion of the heat-kernel on an axially-symmetric space with a codimension two fixed-point set of conical singularities is used to determine the associated conformal change of the effective action in four dimensions. Another derivation of the relevant coefficient is presented.Comment: 10p,uses JyTeX,MUTP/94/1

    The hybrid spectral problem and Robin boundary conditions

    Full text link
    The hybrid spectral problem where the field satisfies Dirichlet conditions (D) on part of the boundary of the relevant domain and Neumann (N) on the remainder is discussed in simple terms. A conjecture for the C_1 coefficient is presented and the conformal determinant on a 2-disc, where the D and N regions are semi-circles, is derived. Comments on higher coefficients are made. A hemisphere hybrid problem is introduced that involves Robin boundary conditions and leads to logarithmic terms in the heat--kernel expansion which are evaluated explicitly.Comment: 24 pages. Typos and a few factors corrected. Minor comments added. Substantial Robin additions. Substantial revisio

    Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity

    Get PDF
    We study magnetohydrodynamic (MHD) effects arising in the collapse of magnetized, rotating, massive stellar cores to proto-neutron stars (PNSs). We perform axisymmetric numerical simulations in full general relativity with a hybrid equation of state. The formation and early evolution of a PNS are followed with a grid of 2500 x 2500 zones, which provides better resolution than in previous (Newtonian) studies. We confirm that significant differential rotation results even when the rotation of the progenitor is initially uniform. Consequently, the magnetic field is amplified both by magnetic winding and the magnetorotational instability (MRI). Even if the magnetic energy E_EM is much smaller than the rotational kinetic energy T_rot at the time of PNS formation, the ratio E_EM/T_rot increases to 0.1-0.2 by the magnetic winding. Following PNS formation, MHD outflows lead to losses of rest mass, energy, and angular momentum from the system. The earliest outflow is produced primarily by the increasing magnetic stress caused by magnetic winding. The MRI amplifies the poloidal field and increases the magnetic stress, causing further angular momentum transport and helping to drive the outflow. After the magnetic field saturates, a nearly stationary, collimated magnetic field forms near the rotation axis and a Blandford-Payne type outflow develops along the field lines. These outflows remove angular momentum from the PNS at a rate given by \dot{J} \sim \eta E_EM C_B, where \eta is a constant of order 0.1 and C_B is a typical ratio of poloidal to toroidal field strength. As a result, the rotation period quickly increases for a strongly magnetized PNS until the degree of differential rotation decreases. Our simulations suggest that rapidly rotating, magnetized PNSs may not give rise to rapidly rotating neutron stars.Comment: 28 pages, 20 figures, accepted for publication in Phys. Rev.

    A Protein‐Based Pentavalent Inhibitor of the Cholera Toxin B‐Subunit

    Get PDF
    Protein toxins produced by bacteria are the cause of many life-threatening diarrheal diseases. Many of these toxins, including cholera toxin (CT), enter the cell by first binding to glycolipids in the cell membrane. Inhibiting these multivalent protein/carbohydrate interactions would prevent the toxin from entering cells and causing diarrhea. Here we demonstrate that the site-specific modification of a protein scaffold, which is perfectly matched in both size and valency to the target toxin, provides a convenient route to an effective multivalent inhibitor. The resulting pentavalent neoglycoprotein displays an inhibition potency (IC50) of 104 pM for the CT B-subunit (CTB), which is the most potent pentavalent inhibitor for this target reported thus far. Complexation of the inhibitor and CTB resulted in a protein heterodimer. This inhibition strategy can potentially be applied to many multivalent receptors and also opens up new possibilities for protein assembly strategies
    corecore