34 research outputs found

    Image-based closed-loop feedback for highly mono-dispersed microdroplet production

    No full text
    Abstract Micron-scale droplets isolated by an immiscible liquid can provide miniaturised reaction vessels which can be manipulated in microfluidic networks, and has seen a rapid growth in development. In many experiments, the precise volume of these microdroplets is a critical parameter which can be influenced by many external factors. In this work, we demonstrate the combination of imaging-based feedback and pressure driven pumping to accurately control the size of microdroplets produced in a microfluidic device. The use of fast-response, pressure-driving pumps allows the microfluidic flow to be quickly and accurately changed, while directly measuring the droplet size allows the user to define the more meaningful parameters of droplet size and generation frequency rather than flow rates or pressures. The feedback loop enables the drift correction of pressure based pumps, and leads to a large increase in the mono-dispersity of the droplets produced over long periods. We also show how this can be extended to control multiple liquid flows, allowing the frequency of droplet formation or the average concentration of living cells per droplet to be controlled and kept constant

    Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis

    No full text
    Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.clos
    corecore