460 research outputs found

    Universal four-body states in heavy-light mixtures with positive scattering length

    Full text link
    The number of four-body states known to behave universally is small. This work adds a new class of four-body states to this relatively short list. We predict the existence of a universal four-body bound state for heavy-light mixtures consisting of three identical heavy fermions and a fourth distinguishable lighter particle with mass ratio κ≳9.5\kappa \gtrsim 9.5 and short-range interspecies interaction characterized by a positive s-wave scattering length. The structural properties of these universal states are discussed and finite-range effects are analyzed. The bound states can be experimentally realized and probed utilizing ultracold atom mixtures.Comment: 5 page

    Full two-electron calculations of antiproton collisions with molecular hydrogen

    Full text link
    Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energy from 1 keV to 6.5 MeV. A nonpertubative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons. Good agreement is obtained between the present calculations and experimental measurements of single-ionization cross sections at high energies, whereas some discrepancies with the experiment are found around the maximum. The importance of the molecular geometry and a full two-electron description is demonstrated. The present findings provide benchmark results which might be useful for the development of molecular models.Comment: 4 pages, 3 figure

    Revised Born-Oppenheimer approach and a multielectron reprojection method for inelastic collisions

    Full text link
    The quantum reprojection method within the standard adiabatic Born-Oppenheimer approach is derived for multielectron collision systems. The method takes nonvanishing asymptotic nonadiabatic couplings into account and distinguishes asymptotic currents in molecular state and in atomic state channels, leading to physically consistent and reliable results. The method is demonstrated for the example of low-energy inelastic Li+Na collisions, for which the conventional application of the standard adiabatic Born-Oppenheimer approach fails and leads to paradoxes such as infinite inelastic cross sections

    Polarization effects in attosecond photoelectron spectroscopy

    Full text link
    We study the influence of polarization effects in streaking by combined atto- and femtosecond pulses. The polarization-induced terms alter the streaking spectrum. The normal streaking spectrum, which maps to the vector potential of the femtosecond pulse, is modified by a contribution following the field instead. We show that polarization effects may lead to an apparent temporal shift, that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen.Comment: 4 pages, 3 figure

    Collisions of antiprotons with hydrogen molecular ions

    Full text link
    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact-energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter method are applied in order to describe the target molecule and the collision process. It is shown that three perpendicular orientations of the molecular axis with respect to the trajectory are sufficient to accurately reproduce the ionization cross section calculated by [Sakimoto, Phys. Rev. A 71, 062704 (2005)] reducing the numerical effort drastically. The independent-event model is employed to approximate the cross section for double ionization and H+ production in antiproton collisions with H2.Comment: 12 pages, 5 figures, 4 table

    Locally Optimal Control of Quantum Systems with Strong Feedback

    Full text link
    For quantum systems with high purity, we find all observables that, when continuously monitored, maximize the instantaneous reduction in the von Neumann entropy. This allows us to obtain all locally optimal feedback protocols with strong feedback, and explicit expressions for the best such protocols for systems of size N <= 4. We also show that for a qutrit the locally optimal protocol is the optimal protocol for a given range of control times, and derive an upper bound on all optimal protocols with strong feedback.Comment: 4 pages, Revtex4. v2: published version (some errors corrected

    Universality of Quantum Gravity Corrections

    Get PDF
    We show that the existence of a minimum measurable length and the related Generalized Uncertainty Principle (GUP), predicted by theories of Quantum Gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb Shift, the Landau levels and the tunnelling current in a Scanning Tunnelling Microscope (STM). We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale, between the electroweak and the Planck scale.Comment: v1: 4 pages, LaTeX; v2: typos corrected, references updated, version to match published version in Physical Review Letter

    Dilute Bose gases interacting via power-law potentials

    Full text link
    Neutral atoms interact through a van der Waals potential which asymptotically falls off as r^{-6}. In ultracold gases, this interaction can be described to a good approximation by the atom-atom scattering length. However, corrections arise that depend on the characteristic length of the van der Waals potential. We parameterize these corrections by analyzing the energies of two- and few-atom systems under external harmonic confinement, obtained by numerically and analytically solving the Schrodinger equation. We generalize our results to particles interacting through a longer-ranged potential which asymptotically falls off as r^{-4}.Comment: 7 pages, 4 figure

    A numerical study of two-photon ionization of helium using the Pyprop framework

    Full text link
    Few-photon induced breakup of helium is studied using a newly developed ab initio numerical framework for solving the six-dimensional time-dependent Schroedinger equation. We present details of the method and calculate (generalized) cross sections for the process of two-photon nonsequential (direct) double ionization at photon energies ranging from 39.4 to 54.4 eV, a process that has been very much debated in recent years and is not yet fully understood. In particular, we have studied the convergence property of the total cross section in the vicinity of the upper threshold (54.4 eV), versus the pulse duration of the applied laser field. We find that the cross section exhibits an increasing trend near the threshold, as has also been observed by others, and show that this rise cannot solely be attributed to an unintended inclusion of the sequential two-photon double ionization process, caused by the bandwidth of the applied field.Comment: 7 pages, 3 figure

    Clusters under strong VUV pulses: A quantum-classical hybrid-description incorporating plasma effects

    Full text link
    The quantum-classical hybrid-description of rare-gas clusters interacting with intense light pulses which we have developed is described in detail. Much emphasis is put on the treatment of screening electrons in the cluster which set the time scale for the evolution of the system and form the link between electrons strongly bound to ions and quasi-free plasma electrons in the cluster. As an example we discuss the dynamics of an Ar147 cluster exposed to a short VUV laser pulse of 20eV photon energy.Comment: 8 pages, 9 figure
    • …
    corecore