724 research outputs found

    Exotic Smoothness and Physics

    Get PDF
    The essential role played by differentiable structures in physics is reviewed in light of recent mathematical discoveries that topologically trivial space-time models, especially the simplest one, R4{\bf R^4}, possess a rich multiplicity of such structures, no two of which are diffeomorphic to each other and thus to the standard one. This means that physics has available to it a new panoply of structures available for space-time models. These can be thought of as source of new global, but not properly topological, features. This paper reviews some background differential topology together with a discussion of the role which a differentiable structure necessarily plays in the statement of any physical theory, recalling that diffeomorphisms are at the heart of the principle of general relativity. Some of the history of the discovery of exotic, i.e., non-standard, differentiable structures is reviewed. Some new results suggesting the spatial localization of such exotic structures are described and speculations are made on the possible opportunities that such structures present for the further development of physical theories.Comment: 13 pages, LaTe

    Localized Exotic Smoothness

    Full text link
    Gompf's end-sum techniques are used to establish the existence of an infinity of non-diffeomorphic manifolds, all having the same trivial R4{\bf R^4} topology, but for which the exotic differentiable structure is confined to a region which is spatially limited. Thus, the smoothness is standard outside of a region which is topologically (but not smoothly) B3×R1{\bf B^3}\times {\bf R^1}, where B3{\bf B^3} is the compact three ball. The exterior of this region is diffeomorphic to standard R1×S2×R1{\bf R^1}\times {\bf S^2}\times{\bf R^1}. In a space-time diagram, the confined exoticness sweeps out a world tube which, it is conjectured, might act as a source for certain non-standard solutions to the Einstein equations. It is shown that smooth Lorentz signature metrics can be globally continued from ones given on appropriately defined regions, including the exterior (standard) region. Similar constructs are provided for the topology, S2×R2{\bf S^2}\times {\bf R^2} of the Kruskal form of the Schwarzschild solution. This leads to conjectures on the existence of Einstein metrics which are externally identical to standard black hole ones, but none of which can be globally diffeomorphic to such standard objects. Certain aspects of the Cauchy problem are also discussed in terms of RΘ4{\bf R^4_\Theta}\models which are ``half-standard'', say for all t<0,t<0, but for which tt cannot be globally smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2

    Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations

    Get PDF
    Models of cosmic inflation suggest that our universe underwent an early phase of accelerated expansion, driven by the dynamics of one or more scalar fields. Inflationary models make specific, quantitative predictions for several observable quantities, including particular patterns of temperature anistropies in the cosmic microwave background radiation. Realistic models of high-energy physics include many scalar fields at high energies. Moreover, we may expect these fields to have nonminimal couplings to the spacetime curvature. Such couplings are quite generic, arising as renormalization counterterms when quantizing scalar fields in curved spacetime. In this chapter I review recent research on a general class of multifield inflationary models with nonminimal couplings. Models in this class exhibit a strong attractor behavior: across a wide range of couplings and initial conditions, the fields evolve along a single-field trajectory for most of inflation. Across large regions of phase space and parameter space, therefore, models in this general class yield robust predictions for observable quantities that fall squarely within the "sweet spot" of recent observations.Comment: 17pp, 2 figs. References added to match the published version. Published in {\it At the Frontier of Spacetime: Scalar-Tensor Theory, Bell's Inequality, Mach's Principle, Exotic Smoothness}, ed. T. Asselmeyer-Maluga (Springer, 2016), pp. 41-57, in honor of Carl Brans's 80th birthda

    Stationary Points of Scalar Fields Coupled to Gravity

    Get PDF
    We investigate the dynamics of gravity coupled to a scalar field using a non-canonical form of the kinetic term. It is shown that its singular point represents an attractor for classical solutions and the stationary value of the field may occur distant from the minimum of the potential. In this paper properties of universes with such stationary states are considered. We reveal that such state can be responsible for modern dark energy density.Comment: H. Kroger, invited talk, FFP6, Udine (2004), revised version with corrected author lis

    A Nonsingular Brans Wormhole: An Analogue to Naked Black Holes

    Full text link
    In a recent paper, we showed the Jordan frame vacuum Brans Class I solution provided a wormhole analogue to Horowitz-Ross naked black hole in the wormhole range -3/2<{\omega}<-4/3. Thereafter, the solution has been criticized by some authors that, because of the presence of singularity in that solution within this range, a wormhole interpretation of it is untenable. While the criticism is correct, we show here that (i) a singularity-free wormhole can actually be obtained from Class I solution by performing a kind of Wick rotation on it, resulting into what Brans listed as his independent Class II solution (ii) the Class II solution has all the necessary properties of a regular wormhole in a revised range -2<{\omega}<-3/2 and finally, (iii) naked black holes, as described by Horowitz and Ross, are spacetimes where the tidal forces attain their maxima above the black hole horizon. We show that in the non-singular Class II spacetime this maxima is attained above the throat and thus can be treated as a wormhole analogue. Some related issues are also addressed.Comment: 20 pages, 4 figure

    Black holes in the Brans-Dicke-Maxwell theory

    Get PDF
    The black hole solutions in the higher dimensional Brans-Dicke-Maxwell theory are investigated. We find that the presence of the nontrivial scalar field depends on the spacetime dimensions (D). When D=4, the solution corresponds to the Reissner-Nordstr\"{o}m black hole with a constant scalar field. In higher dimensions (D>4), one finds the charged black hole solutions with the nontrivial scalar field. The thermal properties of the charged black holes are discussed and the reason why the nontrivial scalar field exists are explained. Also the solutions for higher dimensional Brans-Dicke theory are given for comparison.Comment: Revtex, 5 pages, no figures, contents were rewritten and new references were adde

    Stellar explosion in the weak field approximation of the Brans-Dicke theory

    Full text link
    We treat a very crude model of an exploding star, in the weak field approximation of the Brans-Dicke theory, in a scenario that resembles some characteristics data of a Type Ia Supernova. The most noticeable feature, in the electromagnetic component, is the relationship between the absolute magnitude at maximum brightness of the star and the decline rate in one magnitude from that maximum. This characteristic has become one of the most accurate method to measure luminosity distances to objects at cosmological distances. An interesting result is that the active mass associated with the scalar field is totally radiated to infinity, representing a mass loss in the ratio of the "tensor" component to the scalar component of 1 to (2ω+3)(2 \omega + 3) (ω\omega is the Brans-Dicke parameter), in agreement with a general result of Hawking. Then, this model shows explicitly, in a dynamical case, the mechanism of radiation of scalar field, which is necessary to understand the Hawking result.Comment: 11 pages, no figures. Published in Class. Quantum Gravity V22 (2005

    Coupling parameters and the form of the potential via Noether symmetry

    Get PDF
    We explore the conditions for the existence of Noether symmetries in the dynamics of FRW metric, non minimally coupled with a scalar field, in the most general situation, and with nonzero spatial curvature. When such symmetries are present we find general exact solution for the Einstein equations. We also show that non Noether symmetries can be found. Finally,we present an extension of the procedure to the Kantowski- Sachs metric which is particularly interesting in the case of degenerate Lagrangian.Comment: 13 pages, no figure

    Gravitational dipole radiations from binary systems

    Get PDF
    We investigate the possibility of generating sizeable dipole radiations in relativistic theories of gravity. Optimal parameters to observe their effects through the orbital period decay of binary star systems are discussed. Constraints on gravitational couplings beyond general relativity are derived.Comment: One comment added, accepted for publication in Phys. Rev.

    Singularity Free (Homogeneous Isotropic) Universe in Graviton-Dilaton Models

    Get PDF
    We present a class of graviton-dilaton models in which a homogeneous isotropic universe, such as our observed one, evolves with no singularity at any time. Such models may stand on their own as interesting models for singularity free cosmology, and may be studied further accordingly. They may also arise from string theory. We discuss critically a few such possibilities.Comment: 11 pages. Latex file. Revised in response to referees' Comments. Results remain same. To appear in Phys. Rev. Let
    corecore