2 research outputs found

    Polarizability Anisotropy Relaxation in Nanoconfinement: Molecular Simulation Study of Acetonitrile in Silica Pores

    No full text
    We present the results of a molecular simulation study of polarizability anisotropy relaxation of liquid acetonitrile confined in approximately cylindrical silica pores of diameters in the range of 20–40 Å. Grand Canonical Monte Carlo simulation is used to determine the density of acetonitrile in pores in equilibrium with the bulk liquid, and canonical-ensemble molecular dynamics is then used to calculate the trajectories of the filled pores prepared in this way. We find that the pores are wetting, partially due to hydrogen bonding between acetonitrile nitrogen and pore silanol groups and that acetonitrile molecules have preferential orientations relative to the interface. The mobility of molecules in interfacial regions is considerably reduced and dependent mainly on their proximity to the interface. We include the contributions of molecular and interaction-induced polarizabilities to the collective polarizability anisotropy relaxation. We find that this relaxation includes a slowly relaxing component absent from the corresponding process in bulk acetonitrile and that the amplitude of this component increases as the pore diameter decreases. These results are in agreement with optical Kerr effect experiments on acetonitrile in silica pores in a similar diameter range. Further analysis of our data indicates that collective reorientation and predominantly translational “collision-induced” polarizability dynamics both contribute to the slowly relaxing portion of polarizability anisotropy decay. We further find that pore anisotropy plays a role, giving rise to different relaxation rates of polarizability anisotropy components with a different mix of axial and radial character and that collective reorientation contributing to polarizability anisotropy relaxation is somewhat faster at long times than single-molecule orientational relaxation

    Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra

    No full text
    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution’s dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute–solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute’s own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute’s own rotational dynamics
    corecore