11 research outputs found

    Biodistribution PET/CT study of hemoglobin-DFO-89Zr complex in healthy and lung tumor-bearing mice

    Get PDF
    Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time 89Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine β93 is the sole attachment moiety to the αβ-protomer of Hb. The Hb-DFO complex shows quantitative uptake of 89Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells

    The CD200 Regulates Inflammation in Mice Independently of TNF-α Production

    No full text
    Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200−/− mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200−/− mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression

    Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages.

    No full text
    Established cell lines are widely used in research, however an appealing question is the comparability of the cells between various laboratories, their characteristics and stability in time. Problematic is also the cell line misidentification, genetic and phenotypic shift or Mycoplasma contamination which are often forgotten in research papers. The monocyte/macrophage-like cell line RAW 264.7 has been one of the most commonly used myeloid cell line for more than 40 years. Despite its phenotypic and functional stability is often discussed in literature or at various scientific discussion panels, their stability during the consecutive passages has not been confirmed in any solid study. So far, only a few functional features of these cells have been studied, for example their ability to differentiate into osteoclasts. Therefore, in the present paper we have investigated the phenotype and functional stability of the RAW 264.7 cell line from passage no. 5 till passage no. 50. We found out that the phenotype (expression of particular macrophage-characteristic genes and surface markers) and functional characteristics (phagocytosis and NO production) of RAW 264.7 cell line remains stable through passages: from passage no. 10 up to passage no. 30. Overall, our results indicated that the RAW 264.7 cell line should not be used after the passage no. 30 otherwise it may influence the data reliability

    Antitumor activity of TLR7 is potentiated by CD200R antibody leading to changes in the tumor microenvironment

    No full text
    Stimulation of Toll-like receptor 7 (TLR7) activates myeloid cells and boosts the immune response. Previously, we have shown that stimulation of the inhibitory CD200 receptor (CD200R) suppresses TLR7 signaling and that the absence of CD200R signaling leads to a decreased number of papillomas in mice. Here, we investigated the effects of agonistic anti-CD200R on the antitumor activity of a TLR7 agonist (R848) in a syngeneic mouse tumor model. Intratumoral administration of R848 inhibited the growth of the CT26 colon carcinoma and simultaneously decreased CD200R expression in tumor-infiltrating immune cells. The antitumor effects of R848 were potentiated by anti-CD200R. Successfully treated mice were resistant to rechallenge with the same tumor cells. However, the immediate antitumor effects were independent of lymphocytes, because treatment efficacy was similar in wild-type and Rag1tm1Mom mice. Administration of R848, particularly in combination with anti-CD200R, changed the phenotype of intratumoral myeloid cells. The infiltration with immature MHC-IIþ macrophages decreased and in parallel monocytes and immature MHC-II macrophages increased. Combined treatment decreased the expression of the macrophage markers F4/80, CD206, CD86, CD115, and the ability to produce IL1b, suggesting a shift in the composition of intratumor myeloid cells. Adoptively transferred CD11bþ myeloid cells, isolated from the tumors of mice treated with R848 and anti-CD200R, inhibited tumor outgrowth in recipient mice. We conclude that administration of agonistic anti-CD200R improves the antitumor effects of TLR7 signaling and changes the local tumor microenvironment, which becomes less supportive of tumor progression

    The pro-tumor effect of CD200 expression is not mimicked by agonistic CD200R antibodies.

    No full text
    Tumor-infiltrating immune cells can impact tumor growth and progression. The inhibitory CD200 receptor (CD200R) suppresses the activation of myeloid cells and lack of this pathway results in a reduction of tumor growth, conversely a tumorigenic effect of CD200R triggering was also described. Here we investigated the role of CD200R activation in syngeneic mouse tumor models. We showed that agonistic CD200R antibody reached tumors, but had no significant impact on tumor growth and minor effect on infiltration of immune myeloid cells. These effects were reproduced using two different anti-CD200R clones. In contrast, we showed that CD200-deficiency did decrease melanoma tumor burden. The presence of either endogenous or tumor-expressed CD200 restored the growth of metastatic melanoma foci. On the basis of these findings, we conclude that blockade of the endogenous ligand CD200 prevented the tumorigenic effect of CD200R-expressing myeloid cells in the tumor microenvironment, whereas agonistic anti-CD200R has no effect on tumor development

    The pro-tumor effect of CD200 expression is not mimicked by agonistic CD200R antibodies

    No full text
    Tumor-infiltrating immune cells can impact tumor growth and progression. The inhibitory CD200 receptor (CD200R) suppresses the activation of myeloid cells and lack of this pathway results in a reduction of tumor growth, conversely a tumorigenic effect of CD200R triggering was also described. Here we investigated the role of CD200R activation in syngeneic mouse tumor models. We showed that agonistic CD200R antibody reached tumors, but had no significant impact on tumor growth and minor effect on infiltration of immune myeloid cells. These effects were reproduced using two different anti-CD200R clones. In contrast, we showed that CD200-deficiency did decrease melanoma tumor burden. The presence of either endogenous or tumor-expressed CD200 restored the growth of metastatic melanoma foci. On the basis of these findings, we conclude that blockade of the endogenous ligand CD200 prevented the tumorigenic effect of CD200R-expressing myeloid cells in the tumor microenvironment, whereas agonistic anti-CD200R has no effect on tumor development

    Flow cytometry analysis.

    No full text
    <p>Flow cytometry analysis of CD11b, CD11c, CD86, CD200R, CXCR4 and Ly6C surface markers expression on RAW 264.7 cells. Values of expression are expressed as geometric mean of MFI (Mean Fluorescence Intensity). *- p-value < 0.05, **—p-value < 0.01.</p

    qPCR analysis.

    No full text
    <p>Heat map showing qPCR analysis results of selected genes in various passages of RAW264.7 cells. Differences in gene expression are represented by ΔΔCt values of three biological and three technical replicates. The control for this experiment constituted cells from the passage no. 5. Their gene expression value equals 1. Analysis was performed using R (<a href="https://cran.r-project.org/" target="_blank">https://cran.r-project.org</a>) package gplots [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0198943#pone.0198943.ref025" target="_blank">25</a>].</p

    Phagocytosis assay.

    No full text
    <p>Results of phagocytosis assay performed on RAW 264.7 cells at various passages. Graphs A, C, E show percentage of phagocyting cells, positive for FITC fluorochrome conjugated with latex beads. Graphs B, D, F show the intensity of phagocytosis expressed as mean fluorescence intensity of latex beads. A, B–phagocytosis of RAW 264.7 cells. C, D–phagocytosis of LPS treated RAW 264.7 cells. E, F–comparison of phagocytosis ability of RAW 264.7 cells in various condition, ice control indicating technical control for phagocytosis assay. *- p-value < 0.05, **—p-value < 0.01.</p

    Nitrogen level in cell culture medium.

    No full text
    <p>Level of nitrogen in cell culture medium of RAW 264.7 cells at various passages. A—comparison of NO level in control cells and LPS stimulated cells. B– 24 hrs production of nitric oxide by LPS stimulated RAW 264.7 cells. Data presented as average concentration of produced nitrites, calculated on the standard curve basis. *—p-value < 0.05, **—p-value < 0.01, ***—p-value < 0.001, ****—p-value < 0.0001.</p
    corecore