811 research outputs found

    Alien Registration- Brangwynne, Mary (Old Town, Penobscot County)

    Get PDF
    https://digitalmaine.com/alien_docs/7404/thumbnail.jp

    Drive, filter, and stick: A protein sorting conspiracy in photoreceptors.

    Get PDF
    The sorting of proteins into different functional compartments is a fundamental cellular task. In this issue, Maza et al. (2019. J. Cell Biol https://doi.org/10.1083/jcb.201906024) demonstrate that distinct protein populations are dynamically generated in specialized regions of photoreceptors via an interplay of protein-membrane affinity, impeded diffusion, and driven transport

    DEAD Box Helicases in Rnp Granule

    Get PDF

    Non-equilibrium microtubule fluctuations in a model cytoskeleton

    Full text link
    Biological activity gives rise to non-equilibrium fluctuations in the cytoplasm of cells; however, there are few methods to directly measure these fluctuations. Using a reconstituted actin cytoskeleton, we show that the bending dynamics of embedded microtubules can be used to probe local stress fluctuations. We add myosin motors that drive the network out of equilibrium, resulting in an increased amplitude and modified time-dependence of microtubule bending fluctuations. We show that this behavior results from step-like forces on the order of 10 pN driven by collective motor dynamics

    Cytoplasmic diffusion: molecular motors mix it up

    Get PDF
    Random motion within the cytoplasm gives rise to molecular diffusion; this motion is essential to many biological processes. However, in addition to thermal Brownian motion, the cytoplasm also undergoes constant agitation caused by the activity of molecular motors and other nonequilibrium cellular processes. Here, we discuss recent work that suggests this activity can give rise to cytoplasmic motion that has the appearance of diffusion but is significantly enhanced in its magnitude and which can play an important biological role, particularly in cytoskeletal assembly

    Glioma Expansion in Collagen I Matrices: Analyzing Collagen Concentration-Dependent Growth and Motility Patterns

    Get PDF
    Kaufman, L. J., C. P. Brangwynne, K. E. Kasza, E. Filippidi, V. D. Gordon, T. S. Deisboeck, and D. A. Weitz. “Glioma Expansion in Collagen I Matrices: Analyzing Collagen Concentration-Dependent Growth and Motility Patterns.” Biophysical Journal 89, no. 1 (July 2005): 635–50. doi:10.1529/biophysj.105.061994. -- C. P. Brangwynne, K. E. Kasza, and E. Filippidi, are with the Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts -- L. J. Kaufman, V. D. Gordon (currently with UT Austin), and D. A.Weitz are with the Department of Physics, Harvard University, Cambridge, Massachusetts -- T. S. Deisboeck is with the Molecular Neuro-Oncology Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts and {Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts -- L. J. Kaufman is with the Center for Imaging and Mesoscale Structures, Harvard University, Cambridge, Massachusetts; andWe study the growth and invasion of glioblastoma multiforme (GBM) in three-dimensional collagen I matrices of varying collagen concentration. Phase-contrast microscopy studies of the entire GBM system show that invasiveness at early times is limited by available collagen fibers. At early times, high collagen concentration correlates with more effective invasion. Conversely, high collagen concentration correlates with inhibition in the growth of the central portion of GBM, the multicellular tumor spheroid. Analysis of confocal reflectance images of the collagen matrices quantifies how the collagen matrices differ as a function of concentration. Studying invasion on the length scale of individual invading cells with a combination of confocal and coherent anti-Stokes Raman scattering microscopy reveals that the invasive GBM cells rely heavily on cell-matrix interactions during invasion and remodeling.Chemistr

    Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement

    Get PDF
    Cytoskeletal microtubules have been proposed to influence cell shape and mechanics based on their ability to resist large-scale compressive forces exerted by the surrounding contractile cytoskeleton. Consistent with this, cytoplasmic microtubules are often highly curved and appear buckled because of compressive loads. However, the results of in vitro studies suggest that microtubules should buckle at much larger length scales, withstanding only exceedingly small compressive forces. This discrepancy calls into question the structural role of microtubules, and highlights our lack of quantitative knowledge of the magnitude of the forces they experience and can withstand in living cells. We show that intracellular microtubules do bear large-scale compressive loads from a variety of physiological forces, but their buckling wavelength is reduced significantly because of mechanical coupling to the surrounding elastic cytoskeleton. We quantitatively explain this behavior, and show that this coupling dramatically increases the compressive forces that microtubules can sustain, suggesting they can make a more significant structural contribution to the mechanical behavior of the cell than previously thought possible
    corecore