366 research outputs found

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent 'electric' or 'tingling' character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency ('patterned stimulation'). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand

    Get PDF
    Background: Replacement of a lost limb by an artificial substitute is not yet ideal. Resolution and coordination of motor control approximating that of a biological limb could dramatically improve the functionality of prosthetic devices, and thus reduce the gap towards a suitable limb replacement. Methods: In this study, we investigated the control resolution and coordination exhibited by subjects with transhumeral amputation who were implanted with epimysial electrodes and an osseointegrated interface that provides bidirectional communication in addition to skeletal attachment (e-OPRA Implant System). We assessed control resolution and coordination in the context of routine and delicate grasping using the Pick and Lift and the Virtual Eggs Tests. Performance when utilizing implanted electrodes was compared with the standard-of-care technology for myoelectric prostheses, namely surface electrodes. Results: Results showed that implanted electrodes provide superior controllability over the prosthetic terminal device compared to conventional surface electrodes. Significant improvements were found in the control of the grip force and its reliability during object transfer. However, these improvements failed to increase motor coordination, and surprisingly decreased the temporal correlation between grip and load forces observed with surface electrodes. We found that despite being more functional and reliable, prosthetic control via implanted electrodes still depended highly on visual feedback. Conclusions: Our findings indicate that incidental sensory feedback (visual, auditory, and osseoperceptive in this case) is insufficient for restoring natural grasp behavior in amputees, and support the idea that supplemental tactile sensory feedback is needed to learn and maintain the motor tasks internal model, which could ultimately restore natural grasp behavior in subjects using prosthetic hands

    Strain driven fast osseointegration of implants

    Get PDF
    BACKGROUND: Although the bone's capability of dental implant osseointegration has clinically been utilised as early as in the Gallo-Roman population, the specific mechanisms for the emergence and maintenance of peri-implant bone under functional load have not been identified. Here we show that under immediate loading of specially designed dental implants with masticatory loads, osseointegration is rapidly achieved. METHODS: We examined the bone reaction around non- and immediately loaded dental implants inserted in the mandible of mature minipigs during the presently assumed time for osseointegration. We used threaded conical titanium implants containing a titanium2+ oxide surface, allowing direct bone contact after insertion. The external geometry was designed according to finite element analysis: the calculation showed that physiological amplitudes of strain (500–3,000 ustrain) generated through mastication were homogenously distributed in peri-implant bone. The strain-energy density (SED) rate under assessment of a 1 Hz loading cycle was 150 Jm-3 s-1, peak dislocations were lower then nm. RESULTS: Bone was in direct contact to the implant surface (bone/implant contact rate 90%) from day one of implant insertion, as quantified by undecalcified histological sections. This effect was substantiated by ultrastructural analysis of intimate osteoblast attachment and mature collagen mineralisation at the titanium surface. We detected no loss in the intimate bone/implant bond during the experimental period of either control or experimental animals, indicating that immediate load had no adverse effect on bone structure in peri-implant bone. CONCLUSION: In terms of clinical relevance, the load related bone reaction at the implant interface may in combination with substrate effects be responsible for an immediate osseointegration state

    Osseointegration of zirconia implants: an SEM observation of the bone-implant interface

    Get PDF
    Background The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. Methods A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Gottinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Results Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. Conclusion The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level

    In vivo quantification of photosensitizer fluorescence in the skin-fold observation chamber using dual-wavelength excitation and NIR imaging

    Get PDF
    A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra (hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dualwavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed

    Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    Get PDF
    Background: Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology: Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 mm, BAF-500), in the implant vicinity (100 mm, BAF-100) and further away (100–500 mm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings: After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p.0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-mm compared to the 400-mm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions: BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn’t stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn’t stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.status: publishe
    • …
    corecore