4,938 research outputs found

    Neurocognitive performance and physical function do not change with physical-cognitive-mindfulness training in female laboratory technicians with chronic musculoskeletal pain:Randomized controlled trial

    Get PDF
    BACKGROUND Cognitive and physical performance can be negatively affected by chronic pain. This study evaluates the effect of combined physical-, cognitive-, and mindfulness training (PCMT) on cognitive and physical performance. METHODS From a large pharmaceutical company in Denmark we randomly allocated 112 female laboratory technicians with chronic upper limb pain to group-based PCMT at the worksite or a reference group for 10 weeks. Neurocognitive performance was measured by the computerized central nervous system vital signs neurocognitive assessment battery. Physical function was assessed in terms of shoulder external rotation strength and rate of force development in a custom-made dynamometer setup. RESULTS No between-group differences (least square means 95% confidence interval]) from baseline to follow-up could be detected in any of the neurocognitive domains as measured by the central nervous system vital signs neurocognitive assessment battery, for example, Psychomotoer Speed 1.9 (-1.0 to 4.7), Reaction Time -4.0 (-19.5 to 11.6), Complex Attention -0.3 (-1.9 to 1.4), and Executive Function -0.2 (-3.5 to 3.0). Similarly, we found no change in maximal voluntary isometric strength -0.63 (-4.8 to 3.6), or rate of force development 14.8 (-12.6 to 42.2) of the shoulder external rotators. Finally, test-retest reliability of maximal voluntary contraction and rate of force development shoulder external rotation showed high reliability at 0 to 30 ms, 0 to 50 ms, 0 to 100 ms, and 0 to 200 ms with ICCs at 0.95, 0.92, 0.93, 0.92, and 0.91, respectively. CONCLUSION Ten weeks of PCMT did not improve neurocognitive or physical performance

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc

    Characteristics of Dysphagia in Infants with Microcephaly Caused by Congenital Zika Virus Infection, Brazil, 2015.

    Get PDF
    We summarize the characteristics of dysphagia in 9 infants in Brazil with microcephaly caused by congenital Zika virus infection. The Schedule for Oral Motor Assessment, fiberoptic endoscopic evaluation of swallowing, and the videofluoroscopic swallowing study were used as noninstrumental and instrumental assessments. All infants had a degree of neurologic damage and showed abnormalities in the oral phase. Of the 9 infants, 8 lacked oral and upper respiratory tract sensitivity, leading to delays in initiation of the pharyngeal phase of swallowing. Those delays, combined with marked oral dysfunction, increased the risk for aspiration of food, particularly liquid foods. Dysphagia resulting from congenital Zika virus syndrome microcephaly can develop in infants >3 months of age and is severe

    Organization & sustainability of PIRATA network Report

    Get PDF
    A detailed report on the renewed PIRATA network, and its potential sustainability over long-term. This deliverable has been established with the contribution of the PIRATA International Scientific Steering Group and PIRATA partners

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    In vivo study of experimental pneumococcal meningitis using magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment strategies.</p> <p>Methods</p> <p>Rats infected intracisternally with <it>S. pneumoniae </it>(n = 29) or saline (n = 13) were randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. T1W, T2W, quantitative diffusion, and post contrast T1W images were acquired at 4.7 T. Dynamic MRI (dMRI) was used to evaluate blood-brain-barrier (BBB) permeability and to obtain a measure of cerebral and muscle perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF were measured.</p> <p>Results</p> <p>MR images and dMRI revealed the development of a highly significant increase in BBB permeability (P < 0.002) and ventricle size (P < 0.0001) among infected rats. Clinical disease severity was closely related to ventricle expansion (P = 0.024).</p> <p>Changes in brain water distribution, assessed by ADC, and categorization of brain 'perfusion' by cortex ΔSI<sub>(bolus) </sub>were subject to increased inter-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05). Areas of well-'perfused' muscle decreased with the progression of infection indicative of septicaemia (P = 0.05).</p> <p>Conclusion</p> <p>The evolution of bacterial meningitis was successfully followed <it>in-vivo </it>with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments</p
    corecore