1,519 research outputs found

    Meissner state in finite superconducting cylinders with uniform applied magnetic field

    Full text link
    We study the magnetic response of superconductors in the presence of low values of a uniform applied magnetic field. We report measurements of DC magnetization and AC magnetic susceptibility performed on niobium cylinders of different length-to-radius ratios, which show a dramatic enhance of the initial magnetization for thin samples, due to the demagnetizing effects. The experimental results are analyzed by applying a model that calculates the magnetic response of the superconductor, taking into account the effects of the demagnetizing fields. We use the results of magnetization and current and field distributions of perfectly diamagnetic cylinders to discuss the physics of the demagnetizing effects in the Meissner state of type-II superconductors.Comment: Accepted to be published in Phys. Rev. B; 15 pages, 7 ps figure

    Universality of Frequency and Field Scaling of the Conductivity Measured by Ac-Susceptibility of a Ybco-Film

    Full text link
    Utilizing a novel and exact inversion scheme, we determine the complex linear conductivity σ(ω)\sigma (\omega ) from the linear magnetic ac-susceptibility which has been measured from 3\,mHz to 50\,MHz in fields between 0.4\,T and 4\,T applied parallel to the c-axis of a 250\,nm thin disk. The frequency derivative of the phase σ/σ\sigma ''/\sigma ' and the dynamical scaling of σ(ω)\sigma (\omega) above and below Tg(B)T_g(B) provide clear evidence for a continuous phase transition at TgT_g to a generic superconducting state. Based on the vortex-glass scaling model, the resulting critical exponents ν\nu and zz are close to those frequently obtained on films by other means and associated with an 'isotropic' vortex glass. The field effect on σ(ω)\sigma(\omega) can be related to the increase of the glass coherence length, ξgB\xi_g\sim B.Comment: 8 pages (5 figures upon request), revtex 3.0, APK.94.01.0

    Energy Loss of a Heavy Quark Produced in a Finite Size Medium

    Get PDF
    We study the medium-induced energy loss ΔE0(Lp)-\Delta E_0(L_p) suffered by a heavy quark produced at initial time in a quark-gluon plasma, and escaping the plasma after travelling the distance LpL_p. The heavy quark is treated classically, and within the same framework ΔE0(Lp)-\Delta E_0(L_p) consistently includes: the loss from standard collisional processes, initial bremsstrahlung due to the sudden acceleration of the quark, and transition radiation. The radiative loss {\it induced by rescatterings} ΔErad(Lp)-\Delta E_{rad}(L_p) is not included in our study. For a ultrarelativistic heavy quark with momentum p \gsim 10 {\rm GeV}, and for a finite plasma with L_p \lsim 5 {\rm fm}, the loss ΔE0(Lp)-\Delta E_0(L_p) is strongly suppressed compared to the stationary collisional contribution ΔEcoll(Lp)Lp-\Delta E_{coll}(L_p) \propto L_p. Our results support that ΔErad-\Delta E_{rad} is the dominant contribution to the heavy quark energy loss (at least for L_p \lsim 5 {\rm fm}), as indeed assumed in most of jet-quenching analyses. However they might raise some question concerning the RHIC data on large pp_{\perp} electron spectra.Comment: 18 pages, 3 figures. New version clarified and simplified. A critical discussion added in section 2, and previous sections 3 and 4 have been merged together. Main results are unchange

    Radiation recoil from highly distorted black holes

    Get PDF
    We present results from numerical evolutions of single black holes distorted by axisymmetric, but equatorially asymmetric, gravitational (Brill) waves. Net radiated energies, apparent horizon embeddings, and recoil velocities are shown for a range of Brill wave parameters, including both even and odd parity distortions of Schwarzschild black holes. We find that a wave packet initially concentrated on the black hole throat, a likely model also for highly asymmetric stellar collapse and late stage binary mergers, can generate a maximum recoil velocity of about 150 (23) km/sec for even (odd) parity perturbations, significantly less than that required to eject black holes from galactic cores.Comment: 15 pages, 8 figure

    de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2

    Full text link
    Understanding the superconducting properties of MgB_2 is based strongly on knowledge of its electronic structure. In this paper we review experimental measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using the de Haas-van Alphen (dHvA) effect. In general, the measurements are in excellent agreement with the theoretical predictions of the electronic structure, including the strength of the electron-phonon coupling on each Fermi surface sheet. For the Al doped samples, we are able to measure how the band structure changes with doping and again these are in excellent agreement with calculations based on the virtual crystal approximation. We also review work on the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in MgB2: Physics and Applications" (10 Pages with figures

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread autoimmune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients (n = 76) and healthy controls (n = 71). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical review, verify diagnosis-relevant features and potentially gather new disease knowledge

    Nonlinear electrodynamics of p-wave superconductors

    Full text link
    We consider the Maxwell-London electrodynamics of three dimensional superconductors in p-wave pairing states with nodal points or lines in the energy gap. The current-velocity relation is then nonlinear in the applied field, cubic for point nodes and quadratic for lines. We obtain explicit angular and depth dependent expressions for measurable quantities such as the transverse magnetic moment, and associated torque. These dependences are different for point and line nodes and can be used to distinguish between different order parameters. We discuss the experimental feasibility of this method, and bring forth its advantages, as well as limitations that might be present.Comment: Fourteen pages RevTex plus four postscript figure

    Antiferromagnetism in the Exact Ground State of the Half Filled Hubbard Model on the Complete-Bipartite Graph

    Full text link
    As a prototype model of antiferromagnetism, we propose a repulsive Hubbard Hamiltonian defined on a graph \L={\cal A}\cup{\cal B} with AB={\cal A}\cap {\cal B}=\emptyset and bonds connecting any element of A{\cal A} with all the elements of B{\cal B}. Since all the hopping matrix elements associated with each bond are equal, the model is invariant under an arbitrary permutation of the A{\cal A}-sites and/or of the B{\cal B}-sites. This is the Hubbard model defined on the so called (NA,NB)(N_{A},N_{B})-complete-bipartite graph, NAN_{A} (NBN_{B}) being the number of elements in A{\cal A} (B{\cal B}). In this paper we analytically find the {\it exact} ground state for NA=NB=NN_{A}=N_{B}=N at half filling for any NN; the repulsion has a maximum at a critical NN-dependent value of the on-site Hubbard UU. The wave function and the energy of the unique, singlet ground state assume a particularly elegant form for N \ra \inf. We also calculate the spin-spin correlation function and show that the ground state exhibits an antiferromagnetic order for any non-zero UU even in the thermodynamic limit. We are aware of no previous explicit analytic example of an antiferromagnetic ground state in a Hubbard-like model of itinerant electrons. The kinetic term induces non-trivial correlations among the particles and an antiparallel spin configuration in the two sublattices comes to be energetically favoured at zero Temperature. On the other hand, if the thermodynamic limit is taken and then zero Temperature is approached, a paramagnetic behavior results. The thermodynamic limit does not commute with the zero-Temperature limit, and this fact can be made explicit by the analytic solutions.Comment: 19 pages, 5 figures .ep
    corecore