33,513 research outputs found
Buckling instability in type-II superconductors with strong pinning
We predict a novel buckling instability in the critical state of thin type-II
superconductors with strong pinning. This elastic instability appears in high
perpendicular magnetic fields and may cause an almost periodic series of flux
jumps visible in the magnetization curve. As an illustration we apply the
obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let
Thin Ohmic or superconducting strip with an applied ac electric current
The complex impedance, currents, and electric and magnetic fields are
calculated as functions of resistivity and frequency or London depth for a long
thin strip with applied ac current. Both Ohmic and superconducting strips are
considered. While the inductance per unit length of the strip depends on the
strip length logarithmically, the sheet current, magnetic field, resistance,
and magnetic susceptibility are independent of this length. It is found that
the enhancement of resistance by the skin effect in thin Ohmic strips is much
weaker (logarithmic) than in thick wires.Comment: 4 pages, 3 figures, for Phys. Rev.
Properties of the Ideal Ginzburg-Landau Vortex Lattice
The magnetization curves M(H) for ideal type-II superconductors and the
maximum, minimum, and saddle point magnetic fields of the vortex lattice are
calculated from Ginzburg-Landau theory for the entire ranges of applied
magnetic fields Hc1 <= H < Hc2 or inductions 0 <= B < Hc2 and Ginzburg-Landau
parameters sqrt(1/2) <= kappa <= 1000. Results for the triangular and square
flux-line lattices are compared with the results of the circular cell
approximation. The exact magnetic field B(x,y) and magnetization M(H, kappa)
are compared with often used approximate expressions, some of which deviate
considerably or have limited validity. Useful limiting expressions and
analytical interpolation formulas are presented.Comment: 11 pages, 8 figure
Turbulent channel flow of dense suspensions of neutrally-buoyant spheres
Dense particle suspensions are widely encountered in many applications and in
environmental flows. While many previous studies investigate their rheological
properties in laminar flows, little is known on the behaviour of these
suspensions in the turbulent/inertial regime. The present study aims to fill
this gap by investigating the turbulent flow of a Newtonian fluid laden with
solid neutrally-buoyant spheres at relatively high volume fractions in a plane
channel. Direct Numerical Simulation are performed in the range of volume
fractions Phi=0-0.2 with an Immersed Boundary Method used to account for the
dispersed phase. The results show that the mean velocity profiles are
significantly altered by the presence of a solid phase with a decrease of the
von Karman constant in the log-law. The overall drag is found to increase with
the volume fraction, more than one would expect just considering the increase
of the system viscosity due to the presence of the particles. At the highest
volume fraction here investigated, Phi=0.2, the velocity fluctuation
intensities and the Reynolds shear stress are found to decrease. The analysis
of the mean momentum balance shows that the particle-induced stresses govern
the dynamics at high Phi and are the main responsible of the overall drag
increase. In the dense limit, we therefore find a decrease of the turbulence
activity and a growth of the particle induced stress, where the latter
dominates for the Reynolds numbers considered here.Comment: Journal of Fluid Mechanics, 201
Theory of Type-II Superconductors with Finite London Penetration Depth
Previous continuum theory of type-II superconductors of various shapes with
and without vortex pinning in an applied magnetic field and with transport
current, is generalized to account for a finite London penetration depth
lambda. This extension is particularly important at low inductions B, where the
transition to the Meissner state is now described correctly, and for films with
thickness comparable to or smaller than lambda. The finite width of the surface
layer with screening currents and the correct dc and ac responses in various
geometries follow naturally from an equation of motion for the current density
in which the integral kernel now accounts for finite lambda. New geometries
considered here are thick and thin strips with applied current, and `washers',
i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure
Quantum Spin Hall Effect in Graphene
We study the effects of spin orbit interactions on the low energy electronic
structure of a single plane of graphene. We find that in an experimentally
accessible low temperature regime the symmetry allowed spin orbit potential
converts graphene from an ideal two dimensional semimetallic state to a quantum
spin Hall insulator. This novel electronic state of matter is gapped in the
bulk and supports the quantized transport of spin and charge in gapless edge
states that propagate at the sample boundaries. The edge states are non chiral,
but they are insensitive to disorder because their directionality is correlated
with spin. The spin and charge conductances in these edge states are calculated
and the effects of temperature, chemical potential, Rashba coupling, disorder
and symmetry breaking fields are discussed.Comment: 4 pages, published versio
Meissner-London currents in superconductors with rectangular cross section
Exact analytic solutions are presented for the magnetic moment and screening
currents in the Meissner state of superconductor strips with rectangular cross
section in a perpendicular magnetic field and/or with transport current. The
extension to finite London penetration is achieved by an elegant numerical
method which works also for disks. The surface current in the specimen corners
diverges as l^(-1/3) where l is the distance from the corner. This enhancement
reduces the barrier for vortex penetration and should increase the nonlinear
Meissner effect in d-wave superconductors
Anomaly candidates and invariants of D=4, N=1 supergravity theories
All anomaly candidates and the form of the most general invariant local
action are given for old and new minimal supergravity, including the cases
where additional Yang--Mills and chiral matter multiplets are present.
Furthermore nonminimal supergravity is discussed. In this case local
supersymmetry itself may be anomalous and some of the corresponding anomaly
candidates are given explicitly. The results are obtained by solving the
descent equations which contain the consistency equation satisfied by
integrands of anomalies and invariant actions.Comment: 19 pages, LaTex, NIKHEF-H 93-12, ITP-UH 07/9
- …