7 research outputs found

    Multi-Sektor-Kopplung - Modellbasierte Analyse der Integration erneuerbarer Stromerzeugung durch die Kopplung der Stromversorgung mit dem WĂ€rme-, Gas- und Verkehrssektor

    Get PDF
    Im Projekt MuSeKo wird der kombinierte Einsatz unterschiedlicher FlexibilitĂ€ten und Sektorenkopplungen in einem kĂŒnftigen Energiesystem mit einem hohen Anteil erneuerbarer Energien modellbasiert untersucht. Die Analyse erfolgt mit einem zeitlich und rĂ€umlich aufgelösten, techno-ökonomischen Ansatz. Anhand dessen Ergebnissen werden unterschiedliche energiewirtschaftliche Rahmenbedingungen im Hinblick auf Investitionen und den Anlageneinsatz bewertet. Der Neuheitswert des Projekts liegt einerseits in der Fokussierung auf die Ausgestaltung der Kopplung von Strom- und Gassystem und andererseits auf der Kombination der gesamtwirtschaftlichen mit der betriebswirtschaftlichen Perspektive. Die Projektergebnisse zeigen einerseits die Chancen einer engeren Verzahnung der Strom-, WĂ€rme- und Gasversorgung, und andererseits die damit einhergehenden regulatorischen Herausforderungen fĂŒr die Anreizung systemdienlicher Investitionen und AnlageneinsĂ€tze. Die Arbeiten bieten in den erweiterten Methoden und erhobenen Daten eine wichtige Grundlage zur weiteren Erforschung der Umsetzung der flexiblen Sektorenkopplung in der Energiewende

    Integrating system and operator perspectives for the evaluation of power-to-gas plants in the future German energy system

    Get PDF
    In which way, and in which sectors, will renewable energy be integrated in the German Energy System by 2030, 2040, and 2050? How can the resulting energy system be characterised following a −95% greenhouse gas emission reduction scenario? Which role will hydrogen play? To address these research questions, techno-economic energy system modelling was performed. Evaluation of the resulting operation of energy technologies was carried out from a system and a business point of view. Special consideration of gas technologies, such as hydrogen production, transport, and storage, was taken as a large-scale and long-term energy storage option and key enabler for the decarbonisation of the non-electric sectors. The broad set of results gives insight into the entangled interactions of the future energy technology portfolio and its operation within a coupled energy system. Amongst other energy demands, CO2 emissions, hydrogen production, and future power plant capacities are presented. One main conclusion is that integrating the first elements of a large-scale hydrogen infrastructure into the German energy system, already, by 2030 is necessary for ensuring the supply of upscaling demands across all sectors. Within the regulatory regime of 2020, it seems that this decision may come too late, which jeopardises the achievement of transition targets within the horizon 2050

    How to deal with negative power price spikes?--Flexible voluntary curtailment agreements for large-scale integration of wind

    No full text
    For the large-scale integration of electricity from renewable energy sources (RES-E), the German system seems to reach its limits. In 2009, the electricity wholesale market experienced serious negative prices at times of high wind and low demand. The feed-in system in Germany consists of a fixed feed-in price, a take-off obligation and a RES priority rule, and in practice only very restrictive use of RES-E curtailment. Exactly the latter is the problem. We argue that the overall performance of the system would improve seriously by lifting the restrictions on the use of voluntary curtailment agreements, while retaining the priority rule as such. Since generators of RES-E can only improve under this system reform, investment conditions improve, leading to higher installed RES-E capacity. This in turn implies that reduced wind output due to curtailment can actually be offset by higher wind output in all periods in which there is no problem.Renewable energies Market design Feed-in system
    corecore