6 research outputs found

    Pressure-Dependent Competition among Reaction Pathways from First- and Second‑O<sub>2</sub> Additions in the Low-Temperature Oxidation of Tetrahydrofuran

    No full text
    We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at <i>P</i> = 10–2000 Torr and <i>T</i> = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O<sub>2</sub> addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO<sub>2</sub> or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O<sub>2</sub> and QOOH + O<sub>2</sub> potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH

    Hydroxyacetone Production From C<sub>3</sub> Criegee Intermediates

    No full text
    Hydroxyacetone (CH<sub>3</sub>C­(O)­CH<sub>2</sub>OH) is observed as a stable end product from reactions of the (CH<sub>3</sub>)<sub>2</sub>COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at <i>m</i>/<i>z</i> = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerization via hydrogen atom transfer and −OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. The hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis

    Simulation of the VUV Absorption Spectra of Oxygenates and Hydrocarbons: A Joint Theoretical–Experimental Study

    No full text
    Vacuum UV absorption spectroscopy is regularly used to provide unambiguous identification of a target species, insight into the electronic structure of molecules, and quantitative species concentrations. As molecules of interest have become more complex, theoretical spectra have been used in tandem with laboratory spectroscopic analysis or as a replacement when experimental data is unavailable. However, it is difficult to determine which theoretical methodologies can best simulate experiment. This study examined the performance of EOM-CCSD and 10 TD-DFT functionals (B3LYP, BH&HLYP, BMK, CAM-B3LYP, HSE, M06-2X, M11, PBE0, ωB97X-D, and X3LYP) to produce reliable vacuum UV absorption spectra for 19 small oxygenates and hydrocarbons using vertical excitation energies. The simulated spectra were analyzed against experiment using both a qualitative analysis and quantitative metrics, including cosine similarity, relative integral change, mean signed error, and mean absolute error. Based on our ranking system, it was determined that M06-2X was consistently the top performing TD-DFT method with BMK, CAM-B3LYP, and ωB97X-D also producing reliable spectra for these small combustion species

    Simulation of the VUV Absorption Spectra of Oxygenates and Hydrocarbons: A Joint Theoretical–Experimental Study

    No full text
    Vacuum UV absorption spectroscopy is regularly used to provide unambiguous identification of a target species, insight into the electronic structure of molecules, and quantitative species concentrations. As molecules of interest have become more complex, theoretical spectra have been used in tandem with laboratory spectroscopic analysis or as a replacement when experimental data is unavailable. However, it is difficult to determine which theoretical methodologies can best simulate experiment. This study examined the performance of EOM-CCSD and 10 TD-DFT functionals (B3LYP, BH&HLYP, BMK, CAM-B3LYP, HSE, M06-2X, M11, PBE0, ωB97X-D, and X3LYP) to produce reliable vacuum UV absorption spectra for 19 small oxygenates and hydrocarbons using vertical excitation energies. The simulated spectra were analyzed against experiment using both a qualitative analysis and quantitative metrics, including cosine similarity, relative integral change, mean signed error, and mean absolute error. Based on our ranking system, it was determined that M06-2X was consistently the top performing TD-DFT method with BMK, CAM-B3LYP, and ωB97X-D also producing reliable spectra for these small combustion species

    Photoionization Mass Spectrometric Measurements of Initial Reaction Pathways in Low-Temperature Oxidation of 2,5-Dimethylhexane

    No full text
    Product formation from R + O<sub>2</sub> reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). Interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO<sub>2</sub> + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O<sub>2</sub> to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O<sub>2</sub>-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH

    Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH<sub>3</sub>)<sub>2</sub>COO

    No full text
    The Criegee intermediate acetone oxide, (CH<sub>3</sub>)<sub>2</sub>COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O<sub>2</sub> and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO<sub>2</sub> was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10<sup>–11</sup> cm<sup>3</sup> s<sup>–1</sup> at 298 K and 4 Torr and (1.5 ± 0.5) × 10<sup>–10</sup> cm<sup>3</sup> s<sup>–1</sup> at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of <i>anti</i>-CH<sub>3</sub>CHOO with SO<sub>2</sub>, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N<sub>2</sub> from cavity ring-down decay of the ultraviolet absorption of (CH<sub>3</sub>)<sub>2</sub>COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10<sup>–10</sup> to (2.29 ± 0.08) × 10<sup>–10</sup> cm<sup>3</sup> s<sup>–1</sup>. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, <i>k</i><sub>H</sub>/<i>k</i><sub>D</sub> = (0.53 ± 0.06), for reactions with SO<sub>2</sub>, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD<sub>3</sub>)<sub>2</sub>COO with NO<sub>2</sub> has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10<sup>–12</sup> cm<sup>3</sup> s<sup>–1</sup> (measured with photoionization mass spectrometry), again similar to rate for the reaction of <i>anti</i>-CH<sub>3</sub>CHOO with NO<sub>2</sub>. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH<sub>3</sub>)<sub>2</sub>COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s<sup>–1</sup>, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH<sub>3</sub>)<sub>2</sub>COO with SO<sub>2</sub> and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH<sub>3</sub>)<sub>2</sub>COO with NO<sub>2</sub> and with SO<sub>2</sub> suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products
    corecore