6,981 research outputs found

    The Effects of Securities Class Action Litigation on Corporate Liquidity and Investment Policy

    Get PDF
    The risk of securities class action litigation alters corporate savings and investment policy. Firms with greater exposure to securities litigation hold significantly more cash in anticipation of future settlements and other related costs. The result is due to firms accumulating cash in anticipation of lawsuits and not a consequence of plaintiffs targeting firms with high cash levels. The market value of cash is significantly lower for firms exposed to litigation risk. Corporate investment decisions are also affected by litigation risk, as firms reduce capital expenditures in response. Our results are robust to endogeneity concerns and possible spurious temporal effects

    Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Get PDF
    The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.Silvio O. Conte Center (NIMH MH71702, MH60450); National Institute of Mental Health Research (MH60013, MH61492); National Science Foundation (SLC SBE 0354378); National Institute of Drug Abuse (DA16454)

    Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.

    Get PDF
    The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website
    corecore