3 research outputs found

    Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase.

    No full text
    BackgroundAt interim analysis in a phase 3, observer-blinded, placebo-controlled clinical trial, the mRNA-1273 vaccine showed 94.1% efficacy in preventing coronavirus disease 2019 (Covid-19). After emergency use of the vaccine was authorized, the protocol was amended to include an open-label phase. Final analyses of efficacy and safety data from the blinded phase of the trial are reported.MethodsWe enrolled volunteers who were at high risk for Covid-19 or its complications; participants were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo, 28 days apart, at 99 centers across the United States. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The data cutoff date was March 26, 2021.ResultsThe trial enrolled 30,415 participants; 15,209 were assigned to receive the mRNA-1273 vaccine, and 15,206 to receive placebo. More than 96% of participants received both injections, 2.3% had evidence of SARS-CoV-2 infection at baseline, and the median follow-up was 5.3 months in the blinded phase. Vaccine efficacy in preventing Covid-19 illness was 93.2% (95% confidence interval [CI], 91.0 to 94.8), with 55 confirmed cases in the mRNA-1273 group (9.6 per 1000 person-years; 95% CI, 7.2 to 12.5) and 744 in the placebo group (136.6 per 1000 person-years; 95% CI, 127.0 to 146.8). The efficacy in preventing severe disease was 98.2% (95% CI, 92.8 to 99.6), with 2 cases in the mRNA-1273 group and 106 in the placebo group, and the efficacy in preventing asymptomatic infection starting 14 days after the second injection was 63.0% (95% CI, 56.6 to 68.5), with 214 cases in the mRNA-1273 group and 498 in the placebo group. Vaccine efficacy was consistent across ethnic and racial groups, age groups, and participants with coexisting conditions. No safety concerns were identified.ConclusionsThe mRNA-1273 vaccine continued to be efficacious in preventing Covid-19 illness and severe disease at more than 5 months, with an acceptable safety profile, and protection against asymptomatic infection was observed. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)

    A bivalent meningococcal B vaccine in adolescents and young adults

    No full text
    BACKGROUND MenB-FHbp is a licensed meningococcal B vaccine targeting factor H-binding protein. Two phase 3 studies assessed the safety of the vaccine and its immunogenicity against diverse strains of group B meningococcus. METHODS We randomly assigned 3596 adolescents (10 to 18 years of age) to receive MenB-FHbp or hepatitis A virus vaccine and saline and assigned 3304 young adults (18 to 25 years of age) to receive MenB-FHbp or saline at baseline, 2 months, and 6 months. Immunogenicity was assessed in serum bactericidal assays that included human complement (hSBAs). We used 14 meningococcal B test strains that expressed vaccine-heterologous factor H-binding proteins representative of meningococcal B epidemiologic diversity; an hSBA titer of at least 1:4 is the accepted correlate of protection. The five primary end points were the proportion of participants who had an increase in their hSBA titer for each of 4 primary strains by a factor of 4 or more and the proportion of those who had an hSBA titer at least as high as the lower limit of quantitation (1:8 or 1:16) for all 4 strains combined after dose 3. We also assessed the hSBA responses to the primary strains after dose 2; hSBA responses to the 10 additional strains after doses 2 and 3 were assessed in a subgroup of participants only. Safety was assessed in participants who received at least one dose. RESULTS In the modified intention-to-treat population, the percentage of adolescents who had an increase in the hSBA titer by a factor of 4 or more against each primary strain ranged from 56.0 to 85.3% after dose 2 and from 78.8 to 90.2% after dose 3; the percentages of young adults ranged from 54.6 to 85.6% and 78.9 to 89.7%, after doses 2 and 3, respectively. Composite responses after doses 2 and 3 in adolescents were 53.7% and 82.7%, respectively, and those in young adults were 63.3% and 84.5%, respectively. Responses to the 4 primary strains were predictive of responses to the 10 additional strains. Most of those who received MenB-FHbp reported mild or moderate pain at the vaccination site. CONCLUSIONS MenB-FHbp elicited bactericidal responses against diverse meningococcal B strains after doses 2 and 3 and was associated with more reactions at the injection site than the hepatitis A virus vaccine and saline. (Funded by Pfizer; ClinicalTrials.gov numbers, NCT01830855 and NCT01352845.)

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore