7 research outputs found

    Identification of Putative Origins of Introduced Pigs in Indiana Using Nuclear Microsatellite Markers and Oral History

    Get PDF
    Feral swine (Sus scrofa) have been introduced throughout North America from various global locations (Mayer and Brisbin 1991). In some cases, sources for feral swine are provided through historical records, but for many newly established populations, the origins of feral swine are not known. Understanding the origins and dispersal patterns of feral swine is an important management consideration, because of the introduction of diseases to new locations, for prosecution of individuals who have trans-ported feral swine across state lines, and for allocating swine removal efforts appropriately to address swine translocations within a state or a management area

    Raccoon (\u3ci\u3eProcyon lotor\u3c/i\u3e) biomarker and rabies antibody response to varying oral rabies vaccine bait densities in northwestern Pennsylvania

    Get PDF
    Distribution of oral rabies vaccine baits has been used as a strategy for managing rabies in the United States since the 1990s. Since that time, efforts have been made to improve baiting strategies with a focus on bait density to maximize both efficiency and cost effectiveness. An optimal rabies management strategy includes a vaccine bait preferred by the target species that is distributed at the minimal density needed to achieve population immunity to prevent rabies spread. The purpose of our pilot study was to examine the effect of 75, 150, and 300 baits/km2 vaccine bait densities on rabies virus neutralizing antibody (RVNA) seroprevalence in raccoons (Procyon lotor). Raboral V-RG_ fishmeal polymer baits (Merial Inc. (now a part of Boehringer Ingelheim), Athens, Georgia) contain a tetracycline biomarker that was used to estimate bait consumption as another measure of intervention impact. Our results suggest that raccoon RVNA response increases as bait density increases, but the effect may not be sufficient to justify the cost except in the case of contingency actions or an epizootic. Non-target species, especially opossums (Didelphis virginianus) in certain areas, should be considered when determining an appropriate bait density to ensure sufficient baits are available for consumption by the target species

    Molecular Population Structure for Feral Swine in the United States

    Get PDF
    Feral swine (Sus scrofa) have invaded most of the United States and continue to expand throughout North America. Given the ecological and economic threats posed by increasing feral swine abundance, it is imperative to develop an understanding of their patterns of natural range expansion and human-mediated introductions. Towards this goal, we used molecular markers to elucidate the genetic structure of feral swine populations throughout the United States and evaluated the association between historical introductions and contemporary patterns of genetic organization. We used STRUCTURE and discriminant analysis of principal components (DAPC) to delineate genetic clusters for 959 individuals genotyped at 88 single nucleotide polymorphism loci. We identified 10 and 12 genetic clusters for the 2 clustering approaches, respectively. We observed strong agreement in clusters across approaches, with both describing clusters having strong geographic association at regional levels reflecting past introduction and range expansion patterns. In addition, we evaluated patterns of isolation by distance to test for and estimate spatial scaling of population structure within western, central, and eastern regions of North America. We found contrasting spatial patterns of genetic relatedness among regions, suggesting differences in the invasion process, likely as a result of regional variation in landscape heterogeneity and the influence of human mediated introductions. Our results indicate that molecular analyses of population genetic structure can provide reliable insights into the invasion processes of feral swine, thus providing a useful basis for management focused on minimizing continued range expansion by this problematic species

    Improved First-Order Approximation of Eigenvalues and Eigenvectors

    No full text

    AN INDIVIDUAL-BASED MODEL FOR FERAL HOGS IN GREAT SMOKY MOUNTAINS NATIONAL PARK

    Get PDF
    The expansion of feral hog (Sus scrofa) populations in the United States has resulted in increased efforts to develop and implement control strategies designed to minimize the impacts done by this invasive species. We describe an individual-based model for feral hogs in Great Smoky Mountains National Park (GSMNP). The objectives of the model are to provide an understanding of the population dynamics of this feral hog population and to determine the efficacy of the annual harvest as a population control method. Results suggest that the dynamics of the population are driven by fall hard mast production and the GSMNP harvests currently limit growth of the population, but these control efforts have not reduced the population

    The numbers of fungi: is the descriptive curve flattening?

    No full text
    corecore