10 research outputs found

    Orientation of the N-Terminal Lobe of the Myosin Regulatory Light Chain in Skeletal Muscle Fibers

    Get PDF
    AbstractThe orientation of the N-terminal lobe of the myosin regulatory light chain (RLC) in demembranated fibers of rabbit psoas muscle was determined by polarized fluorescence. The native RLC was replaced by a smooth muscle RLC with a bifunctional rhodamine probe attached to its A, B, C, or D helix. Fiber fluorescence data were interpreted using the crystal structure of the head domain of chicken skeletal myosin in the nucleotide-free state. The peak angle between the lever axis of the myosin head and the fiber or actin filament axis was 100—110° in relaxation, isometric contraction, and rigor. In each state the hook helix was at an angle of ∌40° to the lever/filament plane. The in situ orientation of the RLC D and E helices, and by implication of its N- and C-lobes, was similar in smooth and skeletal RLC isoforms. The angle between these two RLC lobes in rigor fibers was different from that in the crystal structure. These results extend previous crystallographic evidence for bending between the two lobes of the RLC to actin-attached myosin heads in muscle fibers, and suggest that such bending may have functional significance in contraction and regulation of vertebrate striated muscle

    Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Get PDF
    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∌60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys(707) and Lys(843) of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro(830)–Lys(843)) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region

    Orientation of the Essential Light Chain Region of Myosin in Relaxed, Active, and Rigor Muscle

    Get PDF
    The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (ÎČ) of 120–125° with the filament axis. This is ∌30° larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with ÎČ âˆŒ70° and ∌110°, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at ÎČ âˆŒ105°, similar to that determined previously for the RLC region

    Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C

    Get PDF
    As part of a program to develop methods for determining protein structure in situ, sTnC was labeled with a bifunctional rhodamine (BR or BSR), cross-linking residues 56 and 63 of its C-helix. NMR spectroscopy of the N-terminal domain of BSR-labeled sTnC in complex with Ca2+ and the troponin I switch peptide (residues 115–131) showed that BSR labeling does not significantly affect the secondary structure of the protein or its dynamics in solution. BR-labeling was previously shown to have no effect on the solution structure of this complex. Isometric force generation in isolated demembranated fibers from rabbit psoas muscle into which BR- or BSR-labeled sTnC had been exchanged showed reduced Ca2+-sensitivity, and this effect was larger with the BSR label. The orientation of rhodamine dipoles with respect to the fiber axis was determined by polarized fluorescence. The mean orientations of the BR and BSR dipoles were almost identical in relaxed muscle, suggesting that both probes accurately report the orientation of the C-helix to which they are attached. The BSR dipole had smaller orientational dispersion, consistent with less flexible linkers between the rhodamine dipole and cysteine-reactive groups

    Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

    No full text
    Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and hear
    corecore